MHB What Are the Steady States of the Nondimensionalized DE System?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    States Steady
Dustinsfl
Messages
2,217
Reaction score
5
Steady states for a system of nondimensionalized DEs

$$
\begin{array}{lcl}
\frac{du_1}{d\tau} & = & u_1(1 - u_1 - a_{12}u_2)\\
\frac{du_2}{d\tau} & = & \rho u_2(a - a_{21}u_1)
\end{array}
$$

So $(0,0)$ and $(1,0)$. Are there any more? If so, how did you find them?
 
Physics news on Phys.org
What if

$1−u_1 −a_{12} u_2 = 0$ and $a−a_{21} u_1 = 0$?
 
Danny said:
What if

$1−u_1 −a_{12} u_2 = 0$ and $a−a_{21} u_1 = 0$?

I figured it out awhile ago but thanks.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top