What are the steps to prove 2^n < n! using induction?

  • Thread starter Thread starter joshanders_84
  • Start date Start date
  • Tags Tags
    Induction Proof
Click For Summary
SUMMARY

The discussion focuses on proving the inequality 2^n < n! for n ≥ 4 using mathematical induction. The base case is established for n = 4, and the inductive hypothesis assumes that n! > 2^n holds for n. The proof progresses by demonstrating that (n+1)! > 2^(n+1) through manipulation of the inductive hypothesis and careful multiplication. Key steps include confirming that multiplying by (n+1) preserves the inequality, leading to the conclusion that the inequality holds for all n ≥ 4.

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with factorial notation and properties
  • Basic knowledge of exponential functions
  • Ability to manipulate inequalities
NEXT STEPS
  • Study the principles of mathematical induction in depth
  • Learn about factorial growth rates compared to exponential functions
  • Explore additional examples of inductive proofs
  • Review resources on writing inductive proofs, such as inductiveproofs.com
USEFUL FOR

Mathematics students, educators teaching induction, and anyone interested in advanced proof techniques in combinatorics and number theory.

joshanders_84
Messages
23
Reaction score
0
I'm to prove that for n>=4, 2^n < n! holds, but I don't know where to go after the inductive hypothesis that it holds for n>= 4 after showing it works for the base case (n = 4). Here are my steps so far:

2^(n+1) < (n+1)!
2*(2^n) < (n+1)(n!)

but I dont' know where to now! help is much appreciated, thanks.
Josh
 
Physics news on Phys.org
Start with:
1. n \geq 4
2. n! &gt; 2^n
and try to get to
(n+1)! &gt; 2^{n+1}

It shoud be pretty straightforward.
 
I understand that I'm supposed to get there, but I don't see the *proper* first step to take, as the things I have tried haven't gotten me there.
 
Well, for induction, you usually end up proving the n=1 (or in this case n=4) case first. You've got that done.

Then you need to identify your indictive hypothesis:
e.g.
n!&gt;2^n
and
n &gt; 4

In class the proof might look something like this:
(n+1)!=n! (n+1)
from the inductive hypothesis we have
n! (n+1) &gt; 2^n (n+1)
since n&gt;1 we have
2^n(n+1) &gt; 2^n(2)
and
2^n(2) = 2^{n+1}
Now, we can string it all togther to get the inequality:
(n+1)!=n! (n+1) &gt; 2^n(n+1) &gt; 2^n(2) =2^{n+1}
(n+1)! &gt; 2^{n+1}

In general, it's worth trying to figure out wether it 'safe'
to multiply
n!&gt;2^n
by
n+1 &gt; 2
while preserving the inequality.
Which is really what I wanted to do in my head. As soon as you are sure it is legitemate, you're done.
 
I saw a great walkthrough of this proof on inductiveproofs.com. It's an e course about how to write inductive proofs. Very helpful!
 
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 29 ·
Replies
29
Views
4K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K