What Are the Subgroups of Z_n When n Is Even?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    even
Click For Summary

Discussion Overview

The discussion revolves around the subgroups of the cyclic group $\mathbb{Z}_n$ when $n$ is an even positive integer. Participants explore the properties of these subgroups, particularly focusing on the distribution of even and odd elements within them, and the implications of Lagrange's theorem.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a theorem stating that for a subgroup $H$ of $\mathbb{Z}_n$, either all members are even or exactly half are even, depending on the subgroup's generator.
  • Another participant corrects an earlier claim about the subgroup generated by $n$, asserting that in $\mathbb{Z}_n$, $[n] = [0]$.
  • A participant clarifies that since $n$ is even, the subgroup generated by $k$ contains $\{0, k\}$, and questions whether Lagrange's theorem has been covered.
  • Further discussion emphasizes that the definition of "even" must be adapted for $\mathbb{Z}_n$, specifically that $[k]$ is even if it belongs to the subgroup generated by $[2]$.
  • One participant proposes a claim regarding the structure of $H$, stating that if $H$ consists of sums of a minimal generator $k_1$, then $k_1$ must divide $n$.
  • Two cases are considered: if $k_1$ is even, all elements of $H$ are even; if $k_1$ is odd, then there are an even number of elements in $H$, with half being even.

Areas of Agreement / Disagreement

Participants express differing views on the properties of subgroups and the definitions of evenness in the context of $\mathbb{Z}_n$. There is no consensus reached on the implications of the claims made, and the discussion remains unresolved.

Contextual Notes

Some limitations include the dependence on definitions of evenness within the modular arithmetic framework of $\mathbb{Z}_n$, and the unresolved application of Lagrange's theorem in this context.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Contemporary Abstract Algebra by Gallian

This is Exercise 24 Chapter 3 Page 70

Question

Suppose $n$ is an even positve integer and $H$ is a subgroup of $\mathbb{Z}_n$. Prove that either every member of $H$ is even or exactly half of the members of $H$ are even
.

Attempt

We consider some cases :

[1] The subgroup generated by the identity $0$ then $H=<0>=\{0\}$ hence all members are even .
[2] The subgroup generated by $1$ , $H=G$ and since the ordere of $G$ is even , we have half the members are even.
[3] The subgroup generated by $2$, $H=<2>=\{0,2,4,6 , \cdots , 2n\}$
hence all members are even.
[4] The subgroup generated by $n$ , $H=<n>=\{0,n\}$. If $n$ is even then subgroup contains even integers. If $n$ is odd half the members are even.

Since $\mathbb{Z}_n$ is cyclic every subgroup is cyclic. So it suffices to look at the subgroups generated by each even and odd element. I am taking this theorem from another latter chapter so I guess I shouldn't be able to use the properties of cyclic groups.

Any hint how to proceed ?
 
Physics news on Phys.org
The theorem stated is equivalent to this one:

Let $K$ be the subgroup of "even" elements. Then either:

1. $|K \cap H| = |H|$

or:

2. $|K \cap H| = \dfrac{|H|}{2}$.

Some observations about your observations:

Your description of the subgroup generated by $n$ is incorrect: in $\Bbb Z_n$ we have that:

$[n] = [0]$, since $n \equiv 0 \text{ (mod } n)$.

Before I go any further, might I ask: have you covered Lagrange's theorem yet?
 
Deveno said:
Some observations about your observations:

Your description of the subgroup generated by $n$ is incorrect: in $\Bbb Z_n$ we have that:

$[n] = [0]$, since $n \equiv 0 \text{ (mod } n)$.

I actually abused the notations. Since $n$ is even we have $n=2k$ for some positive $k$ then we have the subgroup generated by $k$ contains $\{0,k\}$.

Before I go any further, might I ask: have you covered Lagrange's theorem yet?

No, we only covered groups ,subgroups tests and examples of subgroups.
 
Re: Supgroups of Z_n when n is even

OK. In this case, note that "even" only makes sense when $n$ is an even integer, for if $n$ is odd, "skipping by 2's" lands on every element.

Also note that we can't use our "usual" definition of "even": that $k$ is even if 2 divides $k$, because "divides" doesn't always make sense in $\Bbb Z_n$ (consider $n = 6$ and what "division by 3" could possibly mean).

SO we have to use THIS definition:

$[k]$ is even if $[k]$ is in the subgroup generated by $[2]$ which is:

$\{[0],[2],[4],...,[n-2]\}$.

Equivalently, $[k]$ is even if $k$ is even.

Now, let's do this:

Suppose $H = \{[0],[k_1],...,[k_r]\}$ with:

$1 \leq k_1 <\dots < k_r < n$.

Claim 1:

$H$ consists solely of sums:

$[k_1], 2[k_1],\dots,s[k_1] = [0]$ (here, $t[k_1]$ is a $t$-fold sum of $k_1$ with itself).

Clearly any such sum is in $H$ by closure. Since we have an infinite number of such sums, and $H$ is finite, it must be that for two positive integers $t_1 < t_2$:

$t_1[k_1] = t_2[k_1]$, so $(t_2 - t_1)[k_1] = [0]$.

Since any non-empty set of positive integers has a least element, we have a least such positive integer, $s$. I claim that $s$ divides $n$ and moreover, that $k_1$ does, as well.

Write $n = qk_1 + r$, where $r = 0$ or $r < k_1$.

In $H$, this becomes:

$[0] = q[k_1] + [r]$, showing that $[r] \in H$. Since we chose $k_1$ to be minimal, $r = 0$.

This shows that $k_1$ divides $n$.

Now suppose $k_j$ is not a multiple of $k_1$. Again, we can write:

$k_j = q'k_1 + r'$, and by the same reasoning, we must have $r' = 0$, which contradicts our assumption that $k_j$ is not a multiple of $k_1$.

But now we see that the smallest positive integer $s$ for which $s[k_1] = [0]$ (in $\Bbb Z_n$) must be the $q$ we posited earlier, since for every smaller positive integer $t$, we have:

$tk_1 = k_j < n$.

This proves claim 1.

We now consider two cases:

Case 1: $k_1$ is even.

In this case, we see every element of $H$ is even.

Case 2: $k_1$ is odd. In this case, since $sk_1 = n$ and $n$ is even, We must have an even number of elements in $H$, namely:

$[k_1],2[k_1],\dots,(s-1)[k_1],[0]$.

Clearly, every other element is even, and there are $s/2$ such elements.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K