What Axioms Justify the Simplification of Polynomial Expressions?

Click For Summary

Discussion Overview

The discussion revolves around the axioms that justify the simplification of polynomial expressions, particularly focusing on the use of associative and commutative properties in the context of addition. Participants are asked to identify the axioms that support a specific equality involving polynomial expressions.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants assert that the associative property of addition allows for the removal of parentheses in expressions like $\displaystyle (x^2+2x+5)+(x^2+3x+1)$.
  • Others emphasize the need to prove the associative property before applying it to simplify expressions.
  • A participant suggests that the commutative property can be used to rearrange terms in the polynomial expressions.
  • There is a request for a list of axioms that justify the equality presented, indicating a need for clarity on which axioms apply in this context.
  • Several participants express confusion about the original question, indicating a lack of understanding of what is being asked regarding the axioms.
  • One participant provides an example of how to start a proof using the axiom $1 \cdot x = x$ to illustrate the process of simplification.

Areas of Agreement / Disagreement

Participants generally do not reach a consensus on the clarity of the question being posed, with multiple expressions of confusion. There are differing interpretations of how to approach the problem and which axioms are relevant.

Contextual Notes

Some participants highlight the need for a clear chain of equalities to demonstrate the use of axioms, suggesting that the discussion may be limited by differing interpretations of the problem statement.

Who May Find This Useful

Readers interested in the foundational principles of algebra, particularly those studying polynomial expressions and the axioms of real numbers, may find this discussion relevant.

paulmdrdo1
Messages
382
Reaction score
0
in this problem we drop the use of parentheses when this step is justified by associative axioms. thus we write $\displaystyle x^2+2x+3\,\,instead\,\,of\,\,\left(x^2+2x\right)+3\,or\,x^2+\left(2x+3\right)$. tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
 
Last edited:
Physics news on Phys.org
paulmdrdo said:
in this problem we drop the use of parentheses when this step is justified by associative axioms. thus we write $\displaystyle x^2+2x+3\,\,instead\,\,of\,\,\left(x^2+2x\right)+3\,or\,x^2+\left(2x+3\right)$. tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
You first have to prove: (a + b) + c = a + (b + c) = a + b + c. (I'm assuming the final form is meant to suggest addition of the terms in any order.)

Then for problem 1 use the above result to remove the parenthesis, use commutivity of addition to rearrange the terms, then use the distributive property to factor.

-Dan
 
Last edited by a moderator:
why did you use associativity of addition?
 
i still don't understand what the question means.
 
paulmdrdo said:
i still don't understand what the question means.
I'm assuming that if the addition is associative and commutative then we can show
(a + b) + c = (a + c) + b = (b + c) + a ... = a + b + c because we can show that order doesn't matter. So we simply call it a + b + c.

The problem is asking you to use this to remove the parenthesis in the following:
(x^2 + 2x + 5) + (x^2 + 3x + 1) = x^2 + 2x + 5 + x^2 + 3x + 1

To get to the final form you can use commutivity to rearrange the terms, then use the distributive property to factor them to the final form.

-Dan
 
paulmdrdo said:
tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
The answer to this question should be a list of axioms. The axioms in question are used in a proof of the equality above. Roughly speaking, a proof in this case is a chain of expressions $E_1=E_2=\dots=E_n$ where each $E_i$ has some subexpression $e$, $E_{i+1}$ is obtained from $E_i$ by replacing $e$ with $e'$ and $e=e'$ or $e'=e$ is an instance of an axiom of real numbers. For example, a proof may start with \[(x^2 + 2x + 5) + (x^2 + 3x + 1)=(1\cdot x^2 + 2x + 5) + (x^2 + 3x + 1)\]Here $E_1$ is $(x^2 + 2x + 5) + (x^2 + 3x + 1)$, $e$ is $x^2$ and $e'$ is $1\cdot x^2$. The axiom used here is $1\cdot x=x$ for all $x$, and $1\cdot x^2=x^2$ is its instance.

So you need to list all axioms that are used in the chain of equalities \[(x^2+2x+5)+(x^2+3x+1)=\dots=(1+1)x^2+(2+3)x+ (5+1)\]
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K