MHB What Axioms Justify the Simplification of Polynomial Expressions?

AI Thread Summary
The discussion centers on the axioms that justify the simplification of polynomial expressions, particularly focusing on the removal of parentheses in the expression (x^2 + 2x + 5) + (x^2 + 3x + 1). Participants emphasize the importance of the associative and commutative properties of addition, which allow for rearranging and regrouping terms without changing the result. The distributive property is also highlighted as essential for factoring the final expression. The conversation reveals some confusion regarding the question's requirements, with a call for a clear list of axioms used in the proof chain. Ultimately, the axioms of real numbers, including the identity property, are crucial for justifying the simplification process.
paulmdrdo1
Messages
382
Reaction score
0
in this problem we drop the use of parentheses when this step is justified by associative axioms. thus we write $\displaystyle x^2+2x+3\,\,instead\,\,of\,\,\left(x^2+2x\right)+3\,or\,x^2+\left(2x+3\right)$. tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
 
Last edited:
Mathematics news on Phys.org
paulmdrdo said:
in this problem we drop the use of parentheses when this step is justified by associative axioms. thus we write $\displaystyle x^2+2x+3\,\,instead\,\,of\,\,\left(x^2+2x\right)+3\,or\,x^2+\left(2x+3\right)$. tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
You first have to prove: (a + b) + c = a + (b + c) = a + b + c. (I'm assuming the final form is meant to suggest addition of the terms in any order.)

Then for problem 1 use the above result to remove the parenthesis, use commutivity of addition to rearrange the terms, then use the distributive property to factor.

-Dan
 
Last edited by a moderator:
why did you use associativity of addition?
 
i still don't understand what the question means.
 
paulmdrdo said:
i still don't understand what the question means.
I'm assuming that if the addition is associative and commutative then we can show
(a + b) + c = (a + c) + b = (b + c) + a ... = a + b + c because we can show that order doesn't matter. So we simply call it a + b + c.

The problem is asking you to use this to remove the parenthesis in the following:
(x^2 + 2x + 5) + (x^2 + 3x + 1) = x^2 + 2x + 5 + x^2 + 3x + 1

To get to the final form you can use commutivity to rearrange the terms, then use the distributive property to factor them to the final form.

-Dan
 
paulmdrdo said:
tell what axioms justify the statement:

1. $\displaystyle \left(x^2+2x+5\right)+\left(x^2+3x+1\right)\,=\, \left(1+1\right)x^2+\left(2+3\right)x+ \left(5+1\right)$

i don't understand the question.
The answer to this question should be a list of axioms. The axioms in question are used in a proof of the equality above. Roughly speaking, a proof in this case is a chain of expressions $E_1=E_2=\dots=E_n$ where each $E_i$ has some subexpression $e$, $E_{i+1}$ is obtained from $E_i$ by replacing $e$ with $e'$ and $e=e'$ or $e'=e$ is an instance of an axiom of real numbers. For example, a proof may start with \[(x^2 + 2x + 5) + (x^2 + 3x + 1)=(1\cdot x^2 + 2x + 5) + (x^2 + 3x + 1)\]Here $E_1$ is $(x^2 + 2x + 5) + (x^2 + 3x + 1)$, $e$ is $x^2$ and $e'$ is $1\cdot x^2$. The axiom used here is $1\cdot x=x$ for all $x$, and $1\cdot x^2=x^2$ is its instance.

So you need to list all axioms that are used in the chain of equalities \[(x^2+2x+5)+(x^2+3x+1)=\dots=(1+1)x^2+(2+3)x+ (5+1)\]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top