What Common Mistakes Occur When Calculating Moment Generating Functions (MGFs)?

  • Context: MHB 
  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Moments Mystery
Click For Summary
SUMMARY

This discussion centers on the calculation of Moment Generating Functions (MGFs) and common mistakes encountered during the process. The user attempted to compute the MGF using the integral $M(t) = E \{ e^{tX} \} = \int_{0}^{\infty} (p \lambda e^{-\lambda x} + (1-p) \mu e^{-\mu x}) e^{tx} dx$, but faced convergence issues. The correct interpretation of the MGF is crucial, as it allows for the determination of moments such as mean and variance, specifically through the formulas $E \{X\} = \frac{p}{\lambda} + \frac{1-p}{\mu}$ and $\sigma^{2} = E \{X^{2}\} - E^{2} \{X\}$.

PREREQUISITES
  • Understanding of Moment Generating Functions (MGFs)
  • Knowledge of probability distributions, specifically the exponential distribution
  • Familiarity with integration techniques in calculus
  • Basic statistics concepts including mean and variance
NEXT STEPS
  • Study the convergence criteria for integrals involving exponential functions
  • Learn about the properties and applications of Moment Generating Functions
  • Explore the derivation of moments from MGFs in greater detail
  • Investigate the relationship between MGFs and other statistical measures
USEFUL FOR

Statisticians, data scientists, and students studying probability theory who seek to deepen their understanding of Moment Generating Functions and their applications in statistical analysis.

nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.The concept of MGF still plagues me.

I got an invalid answer when i tried this.

What i did was:

$ \int e^{tx}f_{X}(x)dx $
= $ \int_{-\infty}^{+\infty} e^{tx}(p \lambda e^{-\lambda x} + (1-p)\mu e^{-x\mu})dx$

I was a bit wary at this point, because it reminded me of the bernoulli with the p and (1-p) but i could not find any relation for this.

i separated the two integrals, and ended up with
$ p \lambda \int_{-\infty}^{+\infty}e^{tx-x\lambda}dx + ... $ which i knew was immediately wrong because that integral does not converge.
What did i do wrong.

What does the MGF even tell us. First, second, nth moment, what does this mean to me?
 

Attachments

  • Untitled.jpg
    Untitled.jpg
    8.7 KB · Views: 106
Physics news on Phys.org
nacho said:
Please refer to the attached image.The concept of MGF still plagues me.

I got an invalid answer when i tried this.

What i did was:

$ \int e^{tx}f_{X}(x)dx $
= $ \int_{-\infty}^{+\infty} e^{tx}(p \lambda e^{-\lambda x} + (1-p)\mu e^{-x\mu})dx$

I was a bit wary at this point, because it reminded me of the bernoulli with the p and (1-p) but i could not find any relation for this.

i separated the two integrals, and ended up with
$ p \lambda \int_{-\infty}^{+\infty}e^{tx-x\lambda}dx + ... $ which i knew was immediately wrong because that integral does not converge.
What did i do wrong.

What does the MGF even tell us. First, second, nth moment, what does this mean to me?

By definition is...

$\displaystyle M(t) = E \{ e^{t\ X} \} = \int_{- \infty}^{+ \infty} f(x)\ e^{t\ x}\ dx = \int_{0}^{\infty} \{p\ \lambda\ e^{- \lambda\ x} + (1-p)\ \mu\ e^{- \mu\ x}\ \}\ e^{t\ x}\ d x = \frac{p}{1 - \frac{t}{\lambda}} + \frac{1-p}{1-\frac{t}{\mu}}\ (1)$

The knowledge of M(t) permit us to find mean and variance of X with the formula...

$\displaystyle E \{X^{n}\} = M^{(n)} (0)\ (2)$

... so that is...

$\displaystyle E \{X\} = \frac{p}{\lambda} + \frac{1-p}{\mu}\ (2)$

$\displaystyle E \{X^{2}\} = \frac{2\ p}{\lambda^{2}} + \frac{2\ (1-p)}{\mu^{2}}\ (3)$

$\displaystyle \sigma^{2} = E \{X^{2} \} - E^{2} \{ X \} = \frac{2\ p - p^{2}}{\lambda^{2}} + \frac{2\ (1-p) - (1-p)^{2}}{\mu^{2}} - 2\ \frac{p\ (1-p)}{\lambda\ \mu}\ (4)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
By definition is...

$\displaystyle M(t) = E \{ e^{t\ X} \} = \int_{- \infty}^{+ \infty} f(x)\ e^{t\ x}\ dx = \int_{0}^{\infty} \{p\ \lambda\ e^{- \lambda\ x} + (1-p)\ \mu\ e^{- \mu\ x}\ \}\ e^{t\ x}\ d x = \frac{p}{1 - \frac{t}{\lambda}} + \frac{1-p}{1-\frac{t}{\mu}}\ (1)$

$\chi$ $\sigma$
I don't see how this integral converges, how did you get that answer
 
nacho said:
I don't see how this integral converges, how did you get that answer

Is...

$\displaystyle \lambda\ \int_{0}^{\infty} e^{- (\lambda-t)\ x}\ d x = \frac{\lambda}{t - \lambda} |e^{- (\lambda-t)\ x}|_{0}^{\infty} = \frac{1}{1-\frac{t}{\lambda}}\ (1)$

... and [of course...] the integral in (1) converges if $\displaystyle t< \lambda$. That is not a disavantage because from the pratical point of view what matters in the behaviour of M(t) in t=0...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K