MHB What Comparison Sign To Assert f^(-1)(f(A))? A True?

  • Thread starter Thread starter ranga519
  • Start date Start date
  • Tags Tags
    Functions
ranga519
Messages
4
Reaction score
0
Let f be a function from a set X to a set Y, moreover, A ⊆ X. What comparison sign canput instead? to assert "f ^(−1) (f(A)) ? A" become true? (Possible signs of comparison in this : ⊆, ⊇, =. It is necessary to take into account all options.

f ^(−1) - inverse of fall options.), Let f be a function from a set X to a set Y, moreover, A ⊆ X. What comparison sign canput instead? to asserte-one(f (a))?become true? (Possible signs of comparison in this and the following two problems: ⊆, ⊇, =. It is necessary to take into accountall options.)
 
Physics news on Phys.org
ranga519 said:
Let f be a function from a set X to a set Y, moreover, A ⊆ X. What comparison sign canput instead? to assert "f ^(−1) (f(A)) ? A" become true? (Possible signs of comparison in this : ⊆, ⊇, =. It is necessary to take into account all options.


Suppose $x\in A$. Then $f(x)\in f(A)$ so that $x\in f^{-1}(f(A))$. But there might exist $y\notin A$ such that $f(y)\in f(A)$. That y would also be in $f^{-1}(f(A))$. So what we can say is that $A\subseteq f^{-1}(f(A))$ with the "=" possible but not necessarily. For example if f is a "constant function", $f(x)= y\in Y$ for all $x\in X$ where y is a specific member of Y, then $f^{-1}(f(A))= X$ for A any subset of X.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top