- #1
saminator910
- 96
- 1
What Constitutes something being "coordinate free"
People say that exterior calculus ie. differentiating and integrating differential forms, can be done without a metric, in without specifying a certain coordinate system. I don't really get what qualifies something to be 'coordinate free', I mean in the differential forms I do, one still references components ie. x1,x2, etc., yet I never specified a metric, so is this classified as 'coordinate free'. Also, how does one do differential geometry without a coordinate system, in my mind once you don't specify a coordinate system or a metric, and things become vague, it sort of turns into differential topology, is there a 'middle ground' I am missing, keep in mind I have never taken a coarse in differential geometry. Also, in differential geometry, it has always been pertinent to give specific parametrization in order to find tangent vectors, metrics, etc.
People say that exterior calculus ie. differentiating and integrating differential forms, can be done without a metric, in without specifying a certain coordinate system. I don't really get what qualifies something to be 'coordinate free', I mean in the differential forms I do, one still references components ie. x1,x2, etc., yet I never specified a metric, so is this classified as 'coordinate free'. Also, how does one do differential geometry without a coordinate system, in my mind once you don't specify a coordinate system or a metric, and things become vague, it sort of turns into differential topology, is there a 'middle ground' I am missing, keep in mind I have never taken a coarse in differential geometry. Also, in differential geometry, it has always been pertinent to give specific parametrization in order to find tangent vectors, metrics, etc.