MHB What Determines the Degree and Coefficients of Polynomials?

mathdad
Messages
1,280
Reaction score
0
Specify the degree and the (nonzero) coefficients of each polynomial.

(A) 4

(B) 0

Solution:

The number 4 can be expressed as 4x^0. Is this correct?
If this is right, then the nonzero coefficient must be 4 itself. Is this right? The degree is 0.

The whole number 0 can be expressed as 0x^0. The degree is 0. What is the nonzero coefficient of 0?

Why is 4 a polynomial?

Why is 0 a polynomial?
 
Mathematics news on Phys.org
(A) The degree of a constant is always 0. Any constant c can be written as cx^0.
(B) The degree of 0 is technically undefined. This is a polynomial but has no nonzero terms (obviously) and therefore has no degree.

These are certainly polynomials! More specifically, monomials, meaning they only have one term. A polynomial is a collection of constants and variables with exponents, but you cannot divide by a variable. Both 4 and 0 are then polynomials, because they do not break this rule.
 
joypav said:
(A) The degree of a constant is always 0. Any constant c can be written as cx^0.
(B) The degree of 0 is technically undefined. This is a polynomial but has no nonzero terms (obviously) and therefore has no degree.

These are certainly polynomials! More specifically, monomials, meaning they only have one term. A polynomial is a collection of constants and variables with exponents, but you cannot divide by a variable. Both 4 and 0 are then polynomials, because they do not break this rule.

You said that we cannot divide a variable. Say, for example, x. Is x/2 not considered x divided by 2?
 
RTCNTC said:
You said that we cannot divide a variable. Say, for example, x. Is x/2 not considered x divided by 2?

Not quite, if I understand what you're asking.

x/2 would be a polynomial. In this case, x is in the numerator. You CAN divide a variable by a constant. That is not an issue.

What I meant was, you CANNOT divide by a variable. Meaning, 2/x would not be a monomial. In this case, you have a variable in the denominator.
 
joypav said:
Not quite, if I understand what you're asking.

x/2 would be a polynomial. In this case, x is in the numerator. You CAN divide a variable by a constant. That is not an issue.

What I meant was, you CANNOT divide by a variable. Meaning, 2/x would not be a monomial. In this case, you have a variable in the denominator.

I get it now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top