MHB What Determines the Galois Group of a Polynomial's Splitting Field?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Group
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the polynomial $f(x)=x^3+x^2-2x-1 \in \mathbb{Q}[x]$ and let $E$ be its splitting field.

How can we find the group $Gal(E/\mathbb{Q})$ ?? (Wondering)
 
Physics news on Phys.org
Hi,

The automorphisms will be well defined with the image of the roots of $f$, and are also permutations over the roots, so you only have to check when a so defined automorphism is in the Galois group.
 
Fallen Angel said:
Hi,

The automorphisms will be well defined with the image of the roots of $f$, and are also permutations over the roots, so you only have to check when a so defined automorphism is in the Galois group.

Could you explain it further to me?? (Wondering)
 
Compute the discriminant of the cubic polynomial (it is irreducible). Then check if the discriminant is a square or not, in the square field. If it is a square the group is $A_3$, if it is a non-square then it is $S_3$.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top