What does a Zener diode do in a circuit with non-ideal voltage source?

Click For Summary

Homework Help Overview

The discussion revolves around the function of a Zener diode in a circuit with a non-ideal voltage source, specifically focusing on the relationships between input and output voltages in a voltage divider configuration. Participants are analyzing the effects of varying load resistances and the behavior of the Zener diode under different voltage conditions.

Discussion Character

  • Exploratory, Conceptual clarification, Problem interpretation, Assumption checking

Approaches and Questions Raised

  • Participants explore the nonlinear relationship between output voltage and load resistance. Questions arise regarding the implications of the Zener diode on the circuit's behavior, particularly in terms of clamping the output voltage. There is also confusion about the transcription of the problem statement and the requirements of part (c).

Discussion Status

The discussion is ongoing, with some participants providing calculations and interpretations of the circuit behavior, while others express confusion about the problem's phrasing and requirements. There is no explicit consensus on the interpretation of the Zener diode's role or the specifics of part (c).

Contextual Notes

Participants note potential transcription errors in the problem statement and question the clarity of the requirements, particularly regarding the minimum load resistance and the expected behavior of the Zener diode in the circuit.

zenterix
Messages
774
Reaction score
84
Homework Statement
A voltage source can be represented as the series connection of an ideal DC voltage source and a resistance ##R_{IN}=\mathrm{1k\Omega}##, as illustrated in figure 1a.

The model of the voltage source also includes a small signal voltage source ##v_i## to represent the noise generated by the source.

Assume ##V_I=\mathrm{10V}## and ##v_i=50\mathrm{mV}##.

In practice, connecting a non-ideal voltage source to a load resistance ##R_L##, as in figure 1b, may result in undesirable effects. This problem studies such effects and how to correct them by introducing a Zener diode into the circuit (figure 2a).

(a) In figure 1b, calculate ##v_o## (ie, output noise) and ##V_O## (ie DC output voltage) for ##R_L=\mathrm{2k\Omega}## and ##R_L=4\mathrm{k\Omega}##. What can you say about ##v_o## and ##V_O## as a function of ##R_L##?

(b) Repeat part (a) for the voltage source in figure 2a. In this setting, how do ##v_o## and ##V_O## change with ##R_L##?

(c) In figure 2a, what is the minimum value of ##R_L## that would guarantee that the circuit operates as in part (b)?
Relevant Equations
##V+RI##
1706856399956.png

1706856415761.png


Part (a)
The circuit in figure 1b is linear. It is a simple voltage divider circuit.

The relationship between a voltage source ##V_I## and output voltage ##V_O## is

$$V_O=\frac{R_LR_{IN}}{R_L+R_{IN}}V_I$$

This relationship is true individually and independently for the DC voltage source and the small signal voltage.

If we consider ##V_O## as a function of ##R_L##, we see it is a nonlinear relationship.

For ##R_L=2\mathrm{k\Omega}## we have

$$V_O=\frac{2}{3}V_I$$

and for ##R_L=4\mathrm{k\Omega}##

$$V_O=\frac{4}{5}V_I$$

For these two values of ##R_L## and given the values ##V_I=\mathrm{10V}## and ##v_i=50\mathrm{mV}## we have, respectively, that

$$V_O=\frac{2}{3}\cdot 10\mathrm{V}$$

$$v_o=\frac{2}{3}\cdot 0.050\mathrm{V}$$

and

$$V_O=\frac{4}{5}\cdot\mathrm{10V}$$

$$v_o=\frac{4}{5}\cdot\mathrm{0.050V}$$

Part (b)

Let's consider first ##R_L=\mathrm{2k\Omega}##.

Let's consider the case in which ##\mathrm{-5V\leq V_D\leq 0.6V}##.

Then no current passes through the Zener diode and the circuit becomes the same as in part (a).

The range of input voltage ##V_I## that puts us in this range for ##V_D## is ##\mathrm{-0.9V\leq V_I\leq 7.5V}##.

Next, let's consider the case in which ##\mathrm{V_D>0.6V}##.

When this happens, we can see from figure 2b that the relationship between ##i_D## and ##v_D## is

$$i_D=\mathrm{-600mA}+10^3\mathrm{\frac{mA}{V}}\cdot v_D$$

$$=\mathrm{-0.6A+1\frac{A}{V}}v_D$$

1706857527772.png

Using the node method on the red node above we have

$$\frac{V_I+v_D}{R_{IN}}+(-0.6+v_D)-\frac{(-v_D)}{R_L}=0$$

After some algebra we reach

$$v_D=-V_O=\frac{0.6R_{IN}-V_I}{\left ( 1+\frac{R_{IN}}{R_L}+R_{IN} \right )}$$

If we now input the given values of the variables we get

For ##R_L=\mathrm{2k\Omega}##

$$v_D=\frac{600-V_I}{1001.5}$$

Note that to achieve ##v_D>0.6## we need to have ##V_I<-0.9\mathrm{V}##.

Thus,

$$V_O=-v_D=-\frac{600-10}{1001.5}$$

$$=-\frac{590}{1001.5}$$

and

$$v_o=-v_D=-\frac{600-0.050}{1001.5}=-\frac{599.950}{1001.5}$$

Let's quickly do the calculations for ##R_L=\mathrm{4k\Omega}##.

For ##\mathrm{-5V}\leq v_D\leq \mathrm{0.6V}## the input voltage is ##\mathrm{-0.75V}\leq V_I\leq \mathrm{6.25V}##.

For ##v_D>\mathrm{0.6V}## the input voltage is below ##\mathrm{-0.75V}##.

The relationship between ##v_D## and ##V_I## is

$$v_D=\frac{600-V_I}{1001.25}$$

which is not much different from the relationship when ##R_L=\mathrm{2k\Omega}##.

At this point my impression is that the presence of the Zener diode makes the relationship between input and output voltages less sensitive to ##R_L##.

I won't do the calculations now for the case in which ##v_D<\mathrm{-5V}##. Perhaps in a next post so this one isn't too long. I expect a similar conclusion.

However, I don't quite understand part (c).
 
Last edited:
Physics news on Phys.org
Wow, that's a confusing set of questions, IMO. Part (a) refers to circuit (b), and part (b) refers to circuit (a). And I don't see what part (c) is asking either, at least not yet.

Are you sure you transcribed the question correctly? And asking for a minimum load resistance seems to be implying that they want the output voltage to be clamped by the Zener diode and not by ##R_L##, but I'm not sure. Is that the way you are reading it now? If so, that is not too hard to calculate...
 
@berkeman I think I did transcribe correctly. The problem is the third on this problem set from MIT’s 6.002 Circuits and Electronics.

As for what they are asking for in (c), I really am not sure. I don't have a good understanding of what this Zener diode is doing.
 
zenterix said:
Part (a)
The circuit in figure 1b is linear. It is a simple voltage divider circuit.

The relationship between a voltage source ##V_I## and output voltage ##V_O## is

$$V_O=\frac{R_LR_{IN}}{R_L+R_{IN}}V_I$$

This relationship is true individually and independently for the DC voltage source and the small signal voltage.

You have a typo in ##V_O=\dfrac{R_LR_{IN}}{R_L+R_{IN}}V_I ##

It should be : ##\displaystyle V_O=\dfrac{R_L}{R_L+R_{IN}}V_I ##
 
  • Like
Likes   Reactions: Gavran

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
5K
Replies
22
Views
3K