What exactly is an oscillator in quantum physical context?

Masna
Messages
4
Reaction score
0
I've recently purchased a book on Quantum Physics, and I'm trying to get the basics down. At this point in time, I'm reading up on how Planck proposed that oscillators can only oscillate at discrete energies as opposed to on any amount of energy (on a theoretical continuous spectrum). This came up in his attempt (and success) to solve the black body radiation "problem." However, I don't exactly understand what "oscillator" means in this context. I understand that to oscillate is to move uniformly back and forth (so to speak) over a center point. But I'm confused as to why the word oscillator is used here.

Any help is appreciated. Thanks!
 
Physics news on Phys.org
All it is is a particle in a potential well of U(x) = 1/2 kx^2 (in the one dimensional case).
 
Monocles said:
All it is is a particle in a potential well of U(x) = 1/2 kx^2 (in the one dimensional case).

I'm not sure I understand this.
 
Well, a classical harmonic oscillator that follows Hooke's law of F = -kx has a potential energy of U(x) = 1/2 kx^2. A quantum harmonic oscillator has the same potential energy equation as a classical harmonic oscillator.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top