What is the Definition and Properties of a Cross Product in Vector Algebra?

In summary, the cross product of two vectors is a third vector that is perpendicular to both original vectors, with its magnitude equal to the product of their magnitudes times the sine of the angle between them. It is also anti-commutative and can be expressed in terms of Cartesian components. The triple product of three vectors is the volume of a parallelepiped and is a pseudoscalar. It is also a linear combination of the original vectors. The cross product is a pseudovector, which means it does not change direction when the coordinate axes are inverted. The directed area is an elementary 2-form, and its dual is a 1-form corresponding to the pseudovector. The triple product is essentially a scalar, but is technically
  • #1
19,442
10,021
Definition/Summary

The cross product of two vectors [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex] is a third vector (strictly, a pseudovector or axial vector) [itex]\mathbf{A}\times\mathbf{B}[/itex] perpendicular to both of the original vectors, with magnitude equal to the product of their magnitudes times the (positive) sine of the angle between them, and in the direction determined by the right-hand rule.

It is anti-commutative: [itex]\mathbf{A}\times\mathbf{B}\,=\,-\,\mathbf{B}\times\mathbf{A}[/itex]

If the vectors [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex] are considered as 1-forms, then the wedge product [itex]\mathbf{A}\wedge\mathbf{B}[/itex] is a 2-form (a directed area), and its dual [itex]\ast(\mathbf{A}\wedge\mathbf{B})[/itex] is a dual 1-form, corresponding to the pseudovector [itex]\mathbf{A}\times\mathbf{B}[/itex]

Equations

The magnitude of [itex]\mathbf{A}\times\mathbf{B}[/itex] is the area of the paralleogram with sides [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex]:

[tex]|\mathbf{A}\times\mathbf{B}| = AB \sin \theta[/tex]

In terms of Cartesian components:

[tex](\mathbf{A}\times\mathbf{B})_x = A_y B_z - A_z B_y[/tex]

[tex](\mathbf{A}\times\mathbf{B})_y = A_z B_x - A_x B_z[/tex]

[tex](\mathbf{A}\times\mathbf{B})_z = A_x B_y - A_y B_x[/tex]

The triple product (scalar product) [itex]\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C})[/itex] is the volume of the parallepiped with sides [itex]\mathbf{A}[/itex] [itex]\mathbf{B}[/itex] and [itex]\mathbf{C}[/itex], and therefore:

[tex]\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C})\,=\,\mathbf{B}\cdot(\mathbf{C}\times\mathbf{A})\,=\,\mathbf{C}\cdot(\mathbf{A}\times\mathbf{B})[/tex]

The repeated cross product [itex]\mathbf{A}\times(\mathbf{B}\times\mathbf{C})[/itex] is a vector perpendicular to [itex]\mathbf{A}[/itex], and is a linear combination of [itex]\mathbf{B}[/itex] and [itex]\mathbf{C}[/itex]:

[tex]\mathbf{A}\times(\mathbf{B}\times\mathbf{C})\,=\,(\mathbf{A}\cdot\mathbf{C})\mathbf{B}\,-\,(\mathbf{A}\cdot\mathbf{B})\mathbf{C}[/tex]

Extended explanation

For two vectors [itex]\mathbf{a} = \left(a_x,a_y,a_z\right)\;\;\mathbf{b}=\left(b_x,b_y,b_z\right)[/itex] in [itex]\mathbb{R}^3[/itex], the cross poduct can be written as the determinant of a 3x3 matrix:

[tex]\mathbf{a}\times\mathbf{b} = \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_x & a_y & a_z \\
b_x & b_y & b_z\end{array}\right|[/tex]

Where [itex]\mathbf{i}, \mathbf{j}, \mathbf{k}[/itex] is a right-handed orthonormal basis.

Polar vectors and pseudovectors:

A polar (ordinary) vector is reversed under an inversion of the coordinate axes: [itex]\mathbf{a}\ \mapsto\ -\mathbf{a}[/itex]

However, the cross product of two polar vectors is not reversed: [itex]\mathbf{a}\ \times\ \mathbf{b}\ \mapsto\ (-\mathbf{a})\ \times\ (-\mathbf{b})\ =\ \mathbf{a}\ \times\ \mathbf{b}[/itex]

In other words, the cross product of two polar (ordinary) vectors is invariant (the same) under an inversion of the coordinate axes: this is called a pseudovector (axial vector).

Directed area:

A directed area is a flat surface together with a magnitude (its area), and a sign ([itex]\pm[/itex]) indicating a direction of rotation within the surface (alternatively, indicating a preferred normal direction).

A directed area is an elementary 2-form (a wedge product of two 1-forms).

A general 2-form is a sum of directed areas.

Its dual (in three-dimensional space) is a 1-form in the dual space, corresponding to a pseudovector normal to the surface and with magnitude equal to its area.

Triple product 3-form pseudoscalars and directed volume:

The wedge product of three 1-forms is a 3-form.

In three-dimensional space, all 3-forms are multiples of each other, and so a 3-form is essentially a scalar. To be precise, a 3-form is the dual of a 0-form, which is a scalar.

However, under an inversion of the coordinate axes, a 3-form is multiplied by minus-one, and so a 3-form technically is a psuedoscalar.

The triple product [itex]\mathbf{a}\cdot(\mathbf{b}\,\times\,\mathbf{c})[/itex] of three vectors is the dot product of a vector and a pseudovector, and is the pseudoscalar equal to the wedge product [itex]\mathbf{a}\,\wedge\,\mathbf{b}\,\wedge\,\mathbf{c}[/itex] of the three vectors, in the same order. It is the directed volume of the parallepiped whose sides are those three vectors ("directed" because it includes a sign ([itex]\pm[/itex]) indicating a direction of rotation around the common vertex).

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
 
  • Like
Likes Kashmir
Mathematics news on Phys.org
  • #3
I've a doubt regarding the pseudo vector part and I'll be thankful if you could clarify.
Greg Bernhardt said:
Definition/Summary

The cross product of two vectors [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex] is a third vector (strictly, a pseudovector or axial vector) [itex]\mathbf{A}\times\mathbf{B}[/itex] perpendicular to both of the original vectors, with magnitude equal to the product of their magnitudes times the (positive) sine of the angle between them, and in the direction determined by the right-hand rule.

It is anti-commutative: [itex]\mathbf{A}\times\mathbf{B}\,=\,-\,\mathbf{B}\times\mathbf{A}[/itex]

If the vectors [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex] are considered as 1-forms, then the wedge product [itex]\mathbf{A}\wedge\mathbf{B}[/itex] is a 2-form (a directed area), and its dual [itex]\ast(\mathbf{A}\wedge\mathbf{B})[/itex] is a dual 1-form, corresponding to the pseudovector [itex]\mathbf{A}\times\mathbf{B}[/itex]

Equations

The magnitude of [itex]\mathbf{A}\times\mathbf{B}[/itex] is the area of the paralleogram with sides [itex]\mathbf{A}[/itex] and [itex]\mathbf{B}[/itex]:

[tex]|\mathbf{A}\times\mathbf{B}| = AB \sin \theta[/tex]

In terms of Cartesian components:

[tex](\mathbf{A}\times\mathbf{B})_x = A_y B_z - A_z B_y[/tex]

[tex](\mathbf{A}\times\mathbf{B})_y = A_z B_x - A_x B_z[/tex]

[tex](\mathbf{A}\times\mathbf{B})_z = A_x B_y - A_y B_x[/tex]

The triple product (scalar product) [itex]\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C})[/itex] is the volume of the parallepiped with sides [itex]\mathbf{A}[/itex] [itex]\mathbf{B}[/itex] and [itex]\mathbf{C}[/itex], and therefore:

[tex]\mathbf{A}\cdot(\mathbf{B}\times\mathbf{C})\,=\,\mathbf{B}\cdot(\mathbf{C}\times\mathbf{A})\,=\,\mathbf{C}\cdot(\mathbf{A}\times\mathbf{B})[/tex]

The repeated cross product [itex]\mathbf{A}\times(\mathbf{B}\times\mathbf{C})[/itex] is a vector perpendicular to [itex]\mathbf{A}[/itex], and is a linear combination of [itex]\mathbf{B}[/itex] and [itex]\mathbf{C}[/itex]:

[tex]\mathbf{A}\times(\mathbf{B}\times\mathbf{C})\,=\,(\mathbf{A}\cdot\mathbf{C})\mathbf{B}\,-\,(\mathbf{A}\cdot\mathbf{B})\mathbf{C}[/tex]

Extended explanation

For two vectors [itex]\mathbf{a} = \left(a_x,a_y,a_z\right)\;\;\mathbf{b}=\left(b_x,b_y,b_z\right)[/itex] in [itex]\mathbb{R}^3[/itex], the cross poduct can be written as the determinant of a 3x3 matrix:

[tex]\mathbf{a}\times\mathbf{b} = \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_x & a_y & a_z \\
b_x & b_y & b_z\end{array}\right|[/tex]

Where [itex]\mathbf{i}, \mathbf{j}, \mathbf{k}[/itex] is a right-handed orthonormal basis.

Polar vectors and pseudovectors:

A polar (ordinary) vector is reversed under an inversion of the coordinate axes: [itex]\mathbf{a}\ \mapsto\ -\mathbf{a}[/itex]

However, the cross product of two polar vectors is not reversed: [itex]\mathbf{a}\ \times\ \mathbf{b}\ \mapsto\ (-\mathbf{a})\ \times\ (-\mathbf{b})\ =\ \mathbf{a}\ \times\ \mathbf{b}[/itex]

In other words, the cross product of two polar (ordinary) vectors is invariant (the same) under an inversion of the coordinate axes: this is called a pseudovector (axial vector).

Directed area:

A directed area is a flat surface together with a magnitude (its area), and a sign ([itex]\pm[/itex]) indicating a direction of rotation within the surface (alternatively, indicating a preferred normal direction).

A directed area is an elementary 2-form (a wedge product of two 1-forms).

A general 2-form is a sum of directed areas.

Its dual (in three-dimensional space) is a 1-form in the dual space, corresponding to a pseudovector normal to the surface and with magnitude equal to its area.

Triple product 3-form pseudoscalars and directed volume:

The wedge product of three 1-forms is a 3-form.

In three-dimensional space, all 3-forms are multiples of each other, and so a 3-form is essentially a scalar. To be precise, a 3-form is the dual of a 0-form, which is a scalar.

However, under an inversion of the coordinate axes, a 3-form is multiplied by minus-one, and so a 3-form technically is a psuedoscalar.

The triple product [itex]\mathbf{a}\cdot(\mathbf{b}\,\times\,\mathbf{c})[/itex] of three vectors is the dot product of a vector and a pseudovector, and is the pseudoscalar equal to the wedge product [itex]\mathbf{a}\,\wedge\,\mathbf{b}\,\wedge\,\mathbf{c}[/itex] of the three vectors, in the same order. It is the directed volume of the parallepiped whose sides are those three vectors ("directed" because it includes a sign ([itex]\pm[/itex]) indicating a direction of rotation around the common vertex).

* This entry is from our old Library feature. If you know who wrote it, please let us know so we can attribute a writer. Thanks!
In a right hand system suppose I've two vectors i, j then their cross product is ##\mathbf{i}\ \times\ \mathbf{j}\ =\ \mathbf{k}##

When we invert our coordinate system and then try to calculate the cross product of those two vectors we will have ##\mathbf{-i}\ \times\ \mathbf{-j}\ =\ \mathbf{k}##

That means cross product is a polar vector? But that's wrong.

Do we use a left handed system to compute cross product when we invert our coordinate system? Can you please help me, I'm not able to understand it.
Thank you.
 
  • #4
Kashmir said:
I've a doubt regarding the pseudo vector part and I'll be thankful if you could clarify.

In a right hand system suppose I've two vectors i, j then their cross product is ##\mathbf{i}\ \times\ \mathbf{j}\ =\ \mathbf{k}##

When we invert our coordinate system and then try to calculate the cross product of those two vectors we will have ##\mathbf{-i}\ \times\ \mathbf{-j}\ =\ \mathbf{k}##

That means cross product is a polar vector? But that's wrong.

Do we use a left handed system to compute cross product when we invert our coordinate system? Can you please help me, I'm not able to understand it.
Thank you.
You got a definition backwards, it is said that under an inversion (also known as a parity transformation), that ##\vec{x} \rightarrow -\vec{x}## and as you just said, the cross product remains the same. So, it can't be a polar vector (aka "real vector"), so historically they called it a pseudovector, I believe.
 

1. What is a cross product?

A cross product is a mathematical operation that takes two vectors as inputs and produces a new vector as the output. It is also known as a vector product or an exterior product.

2. How is a cross product calculated?

To calculate the cross product of two vectors, you must use the following formula: A x B = (AyBz - AzBy, AzBx - AxBz, AxBy - AyBx). This formula results in a new vector that is perpendicular to the two original vectors.

3. What is the purpose of a cross product?

The cross product has many theoretical and practical applications in mathematics, physics, and engineering. It is commonly used to calculate torque, determine the area of a parallelogram, and find the direction of a magnetic field. It is also used in 3D graphics and computer vision applications.

4. What is the difference between a dot product and a cross product?

The dot product is a scalar quantity, meaning it only has magnitude and no direction. It is calculated by multiplying the magnitudes of two vectors and the cosine of the angle between them. The cross product, on the other hand, is a vector quantity and results in a new vector that is perpendicular to the original vectors. It is calculated using a different formula and involves the sine of the angle between the vectors.

5. Can any two vectors have a cross product?

No, the cross product can only be calculated for three-dimensional vectors. Additionally, the two vectors must be non-zero and not parallel to each other. If the two vectors are parallel, their cross product will be zero.

Similar threads

Replies
6
Views
531
  • General Math
Replies
4
Views
4K
  • Advanced Physics Homework Help
Replies
1
Views
911
  • Linear and Abstract Algebra
Replies
7
Views
2K
Replies
8
Views
833
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
972
  • Special and General Relativity
2
Replies
59
Views
4K
  • Precalculus Mathematics Homework Help
Replies
4
Views
1K
Replies
8
Views
2K
Back
Top