What is the Chain Rule for Integration?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Chain Chain rule
Click For Summary
SUMMARY

The discussion focuses on the application of the Chain Rule for Integration, specifically using the integral $$I=\int { \left({t}^{3/2}+47\right)^3 \sqrt{t} } \ d{t}$$. The correct substitution is established as $$u=t^{3/2}+47$$, leading to $$du=\frac{3}{2}t^{1/2} \ d{t}$$. The final result of the integration is $$I=\frac{\left({t}^{3/2}+47\right)^4 }{6}+C$$, confirming the proper application of the Chain Rule and substitution techniques in calculus.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with the Chain Rule
  • Knowledge of substitution methods in integration
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the application of the Chain Rule in more complex integrals
  • Learn about integration techniques involving polynomial functions
  • Explore the concept of definite integrals and their applications
  • Review common mistakes in substitution during integration
USEFUL FOR

Students of calculus, mathematics educators, and anyone looking to deepen their understanding of integration techniques, particularly the Chain Rule.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Whitman 8.7.18 chain rule} $
$$\displaystyle
I=\int { \left({t}^{3/2}+47\right)^3 \sqrt{t} } \ d{t}
={ \left({t}^{3/2}+{47}^{}\right)^4/6 } + C$$
$$\begin{align}
\displaystyle
u& = {t}^{3/2}+47&
du&=\frac{3}{2}{t}^{1/2} \ d{t}& \\
\end{align}$$

$$I=\frac{3}{2}\int\left({u}\right)^3 du $$

Don't see the answer coming from this?

$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 
Last edited:
Physics news on Phys.org
Okay, let's take a look at your substitution:

$$u=t^{\frac{3}{2}}+47\,\therefore\,du=\frac{3}{2}t^{\frac{1}{2}}\,dt\implies dt=\frac{2}{3}t^{-\frac{1}{2}}\,du$$

So, we now have:

$$I=\frac{2}{3}\int u^3\,du$$

You only made a minor error in your substitution for $dt$...now you will get the stated result. :D
 
$\tiny\text{Whitman 8.7.18 chain rule} $
$$\displaystyle
I=\int { \left({t}^{3/2}+47\right)^3 \sqrt{t} } \ d{t}
={ \left({t}^{3/2}+{47}^{}\right)^4/6 } + C$$
$$\begin{align}
\displaystyle
u& = {t}^{3/2}+47&
du&=\frac{3}{2}{t}^{1/2} \ d{t}& \\
\end{align}$$

$$I=\frac{2}{3}\int u^3 du
= \frac{2}{3}\cdot\frac{u^4}{4}
=\frac{u^4}{6}$$

Back substittute

$$I=\frac{\left({t}^{3/2}+47\right)^4 }{6}+C$$$\tiny\text
{from Surf the Nations math study group}$
🏄 🏄 🏄
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K