What Is the Connection Between Buoyancy and Apparent Mass?

AI Thread Summary
The discussion revolves around the calculation of buoyancy and apparent mass in a scenario involving a beaker of water and a submerged rock. The calculations show that the total mass measured by the scale after the rock is submerged is 4.54 kg, which includes both the mass of the beaker and the rock's apparent weight. Confusion arises regarding the role of buoyant force in determining the apparent mass, as one participant believes that tension should solely represent the rock's apparent weight. The explanation clarifies that the scale measures the combined effects of buoyant force and the weight of the water, as per Newton's third law. The inconsistency in gravitational acceleration values used in calculations is also noted as a potential source of confusion.
TkoT
Messages
7
Reaction score
2
Homework Statement
A cylindrical beaker of mass mb = 1.3 kg contains 1.5 x 10^3 ml of water. The beaker is placed on a scale and then a rock of mass mr = 2.2 kg, suspended by a massless string, is totally immersed in the water. The water level rises by 1.5 cm. The diameter of the beaker is 0.2m
a) What mass does the scale measure before the rock is lowered into the water?
b) What mass does the scale measure after the rock is lowered into the water?
Relevant Equations
F=mg
my solution:
a)
Screenshot 2023-01-05 082847.png

F(upward)=Fb +Fw
=(1.3+1.5)X9.8
=27.44N
total Mass = 2.8kg
b)
123.png

Volume increased = π(0.2/2)^2 x 1.5/100
=4.7x10-4 m^3

T+Fb =mg
T=mg-Fb
T=2.2x9.8 -1000 x 4.7x10-4 x 9.8
T=17.4N
T is the apparent weight of the rock, so the mass of the rock in the water is 1.74kg
So, the total mass measured by the scale = 1.74 +2.8 = 4.54kg

Question:
I am confused about the part b after I checked the answer. For me, I think the tension represents the apparent weight of the rock. So apparent mass of the rock can be obtained by the tension. But, In the answer, buoyant force is considered as the extra weight added to the scale. That confuses me and I don’t understand why.

answer attached below
 

Attachments

  • answer1.png
    answer1.png
    23.3 KB · Views: 98
  • answer2.png
    answer2.png
    26.7 KB · Views: 117
  • answer3.png
    answer3.png
    15.5 KB · Views: 121
Last edited:
Physics news on Phys.org
TkoT said:
Homework Statement:: A cylindrical beaker of mass mb = 1.3 kg contains 1.5 x 10^3 ml of water. The beaker is placed on a scale and then a rock of mass mr = 2.2 kg, suspended by a massless string, is totally immersed in the water. The water level rises by 1.5 cm. The diameter of the beaker is 0.2m
a) What mass does the scale measure before the rock is lowered into the water?
b) What mass does the scale measure after the rock is lowered into the water?
Relevant Equations:: F=mg

That confuses me and I don’t understand why.
Without the rock the scale reads just the weight of the water, ##m_{\text{water}}g##. When the rock is placed under water, the water exerts buoyant force BF up. By Newton's 3rd law, the rock exerts force BF down on the water. The scale reads the sum of the two because it must exert normal force ##N=BF+m_{\text{water}}g## up to keep the water from accelerating.
 
You seem to be using 9.8m/s2 for g in some places and 10m/s2 in others.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top