I started with integral and differential calculus. After that I went offer to Einsteins theory of relativity. Then I wanted to do something in quantum mechanics, so I learned to calculate with a very important equation (schrödinger equation <--- Hamiltonian). After that I took a watch at Hilbertspace (only a little) and learned to calculate and to derive the uncertainty principle. So, I've to be more then 1.5 years in school until I can study physics. In school we're discussing electricity (easy physics).
Now I want to learn some thing about ZPE and vacuum fluctuation.
I know what f is and I now what omega is, I know what a oscillation and a wave is. But a pdf document was confusing me.
@dexter:
"What does it have to do with normal ordering"
Sorry I'm not from UK, what's a "normal ordering". Don't let me think of anything in physics.
I think I understand it now really and finally, let me try:
Einstein's equation for the energy of a photon is: E=hf=h(bar)w/2. Here we describe a photon. Now, in the ground state an electro magnetic field hasn't any energy and so far no photons. Cause of the Heisenberg's uncertainty principle d(E)d(t)=h/(4pi) a system can't have an energy of zero. So in vacuum the above equation wouldn't be sadisfied if we work in classical theories. In quantum mechanics this problem is solved by letting create virtual particles and letting them annihilate after a short time. The energy of such a particle pair (if electro magnetic) is: E=2hf.
If we go over to a cristall latter (my English

) that is cooled down to 0 K we see that this cristall latter oscillates. The reasen is that the lowest allowed energy of a harmonic oscillator is E=1/2h(bar)w and not zero. E=1/2h(bar)w is the energy of a phonon, a quantum we use to describe vibration mods in a cristall latter.
I saw, that my posted forumla in tha attachment is the formula to "count" the whole energy of a system of all free bosons. Can somebody give me a web page where this formula is derived (can't find one).
Thanks for everything.