MHB What is the identity being proved?

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The discussion focuses on proving the identity $\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$. The left-hand side is simplified step-by-step, ultimately leading to $\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}$. This expression is further manipulated to show that it equals the right-hand side of the identity. The conclusion confirms that both sides of the equation are equivalent, thus proving the identity.
Silver Bolt
Messages
8
Reaction score
0
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?
 
Mathematics news on Phys.org
Silver Bolt said:
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?

to continue

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)}{( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1+\sin\left({A}\right))( 1-\sin\left({A}\right))}$ multiply by 1- sin for the case of 1 + sin so on
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1- \sin^2\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( \cos^2\left({A}\right))}$
$= \frac{(( 1-\sin\left({A}\right))}{ \cos\left({A}\right)}$
$= \frac{\cot(A) (( 1-\sin\left({A}\right))}{\cot\left({A}\right) \cos\left({A}\right)}$
Now for the numerator
$= \cot(A) (( 1-\sin\left({A}\right))$
$= \cot(A) - \cot(A)\sin\left({A}\right)$
$= \cot(A) - \cos(A)$

hence the result
 
$$\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}\cdot\frac{\tan(A)}{\tan(A)}=\frac{\cos(A)}{1+\sin(A)}$$

$$=\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}=\frac{1-\sin(A)}{\cos(A)}\cdot\frac{\cot(A)}{\cot(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top