What is the identity being proved?

  • Context: MHB 
  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
SUMMARY

The identity being proved is $$\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$$. The left-hand side (L.H.S) simplifies to $$\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}$$, which is equal to the right-hand side (R.H.S) after appropriate algebraic manipulations. The proof involves substituting cotangent and cosine functions, simplifying fractions, and applying trigonometric identities effectively.

PREREQUISITES
  • Understanding of trigonometric identities, specifically cotangent and cosine functions.
  • Ability to manipulate algebraic fractions and simplify expressions.
  • Familiarity with the unit circle and basic trigonometric values.
  • Knowledge of the Pythagorean identity involving sine and cosine.
NEXT STEPS
  • Study the derivation of trigonometric identities using algebraic manipulation techniques.
  • Learn about the properties of cotangent and its relationship with sine and cosine.
  • Explore advanced trigonometric identities and their proofs, such as sum and difference formulas.
  • Practice solving complex trigonometric equations to enhance problem-solving skills.
USEFUL FOR

Students of mathematics, particularly those studying trigonometry, educators teaching trigonometric identities, and anyone interested in enhancing their algebraic manipulation skills in relation to trigonometric functions.

Silver Bolt
Messages
8
Reaction score
0
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?
 
Mathematics news on Phys.org
Silver Bolt said:
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?

to continue

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)}{( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1+\sin\left({A}\right))( 1-\sin\left({A}\right))}$ multiply by 1- sin for the case of 1 + sin so on
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1- \sin^2\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( \cos^2\left({A}\right))}$
$= \frac{(( 1-\sin\left({A}\right))}{ \cos\left({A}\right)}$
$= \frac{\cot(A) (( 1-\sin\left({A}\right))}{\cot\left({A}\right) \cos\left({A}\right)}$
Now for the numerator
$= \cot(A) (( 1-\sin\left({A}\right))$
$= \cot(A) - \cot(A)\sin\left({A}\right)$
$= \cot(A) - \cos(A)$

hence the result
 
$$\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}\cdot\frac{\tan(A)}{\tan(A)}=\frac{\cos(A)}{1+\sin(A)}$$

$$=\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}=\frac{1-\sin(A)}{\cos(A)}\cdot\frac{\cot(A)}{\cot(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K