MHB What is the identity being proved?

  • Thread starter Thread starter Silver Bolt
  • Start date Start date
  • Tags Tags
    Identity
Click For Summary
The discussion focuses on proving the identity $\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$. The left-hand side is simplified step-by-step, ultimately leading to $\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}$. This expression is further manipulated to show that it equals the right-hand side of the identity. The conclusion confirms that both sides of the equation are equivalent, thus proving the identity.
Silver Bolt
Messages
8
Reaction score
0
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?
 
Mathematics news on Phys.org
Silver Bolt said:
$\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}=\frac{\cot\left({A}\right)-\cos\left({A}\right)}{\cot\left({A}\right)\cos\left({A}\right)}$

$L.H.S=\frac{\cot\left({A}\right)\cos\left({A}\right)}{\cot\left({A}\right)+\cos\left({A}\right)}$

$=\frac{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}\cos\left({A}\right)}{\frac{\cos\left({A}\right)}{\sin\left({A}\right)}+\cos\left({A}\right)}$

$=\frac{\frac{\cos^2\left({A}\right)}{\sin\left({A}\right)}}{\frac{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}{\sin\left({A}\right)}}$

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)+\cos\left({A}\right)\sin\left({A}\right)}$

What should be done from here?

to continue

$=\frac{\cos^2\left({A}\right)}{\cos\left({A}\right)( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)}{( 1+\sin\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1+\sin\left({A}\right))( 1-\sin\left({A}\right))}$ multiply by 1- sin for the case of 1 + sin so on
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( 1- \sin^2\left({A}\right))}$
$= \frac{\cos\left({A}\right)(( 1-\sin\left({A}\right))}{( \cos^2\left({A}\right))}$
$= \frac{(( 1-\sin\left({A}\right))}{ \cos\left({A}\right)}$
$= \frac{\cot(A) (( 1-\sin\left({A}\right))}{\cot\left({A}\right) \cos\left({A}\right)}$
Now for the numerator
$= \cot(A) (( 1-\sin\left({A}\right))$
$= \cot(A) - \cot(A)\sin\left({A}\right)$
$= \cot(A) - \cos(A)$

hence the result
 
$$\frac{\cot(A)\cos(A)}{\cot(A)+\cos(A)}\cdot\frac{\tan(A)}{\tan(A)}=\frac{\cos(A)}{1+\sin(A)}$$

$$=\frac{\cos(A)(1-\sin(A))}{\cos^2(A)}=\frac{1-\sin(A)}{\cos(A)}\cdot\frac{\cot(A)}{\cot(A)}=\frac{\cot(A)-\cos(A)}{\cot(A)\cos(A)}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K