MHB What is the integral of $\frac{x^2-1}{\sqrt{2x-1}}$?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integral of $\frac{x^2-1}{\sqrt{2x-1}}$ is approached through substitution, setting $u=2x-1$ and transforming the integral accordingly. This leads to the expression $\frac{1}{8}\int\frac{(u+1)^2-4}{u^{1/2}}\,du$, which simplifies to $\frac{1}{8}\int\frac{u^2+2u-3}{u^{1/2}}\, du$. The integral is then broken down into three simpler integrals, allowing the application of the power rule. The final result is expressed in terms of $x$, yielding a complex expression involving powers of $(2x-1)$. The discussion effectively demonstrates the step-by-step process of solving the integral using substitution and simplification techniques.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{307.4.5.71}$
\begin{align}
\displaystyle
I_{71}&=\int{\frac{x^2-1}{\sqrt{2x-1}}}dx\\
u&=2x-1\therefore dx=\frac{1}{2}du\\
x&=\frac{u+1}{2}\\
I_u&= \int{\frac{{[(1/2)(u+1)]}^2-1}{\sqrt{u}}}
\cdot \frac{1}{2} \, du\\
\end{align}

$\textit{not sure what is best to do next?}$
 
Physics news on Phys.org
Your substitution is a good one...let's write the integral as:

$$I=\frac{1}{2}\int\frac{\left(\frac{u+1}{2}\right)^2-1}{u^{\frac{1}{2}}}\,du$$

Next, let's multiply by $$1=\frac{4}{4}$$:

$$I=\frac{1}{8}\int\frac{(u+1)^2-4}{u^{\frac{1}{2}}}\,du$$

Can you proceed?
 
$\tiny{307.4.5.71}$
\begin{align}
\displaystyle
I_{71}&=\int{\frac{x^2-1}{\sqrt{2x-1}}}dx\\
u&=2x-1\therefore dx=\frac{1}{2}du\\
x&=\frac{u+1}{2}\\
I_u&= \int{\frac{{[(1/2)(u+1)]}^2-1}{\sqrt{u}}}
\cdot \frac{1}{2} \, du\\
&=\frac{1}{8}\int\frac{(u+1)^2-4}{u^{\frac{1}{2}}}\,du
=\frac{1}{8}\int\frac{u^2+2u-3}{u^{1/2}}
\end{align}

$\text{this or go with $v=u+1$ for a trig id}$
 
Last edited:
Just simplify the integrand...you will have 3 terms containing u to various powers, to which you can then apply the power rule. (Yes)
 
$$\int\frac{x^2-1}{\sqrt{2x-1}}\,\text{d}x$$

$$u=\sqrt{2x-1}\quad x=\frac{u^2+1}{2}$$

$$\text{d}u=\frac{1}{\sqrt{2x-1}}\text{ d}x$$

$$\int\left(\frac{u^2+1}{2}\right)^2-1\text{ d}u$$
 
$\tiny{307.4.5.71}$
\begin{align}
\displaystyle
I_{71}&=\int{\frac{x^2-1}{\sqrt{2x-1}}}dx\\
u&=2x-1\therefore dx=\frac{1}{2}du\\
x&=\frac{u+1}{2}\\
I_u&= \int{\frac{{[(1/2)(u+1)]}^2-1}{\sqrt{u}}}
\cdot \frac{1}{2} \, du\\
&=\frac{1}{8}\int\frac{(u+1)^2-4}{u^{\frac{1}{2}}}\,du
=\frac{1}{8}\int\frac{u^2+2u-3}{u^{1/2}}\, du\\
&=\frac{1}{8}\left[\int\frac{u^2}{u^{1/2}} \, du
+2\int\frac{u}{u^{1/2}}\, du
-3\int\frac{1}{u^{1/2}}\, du\right] \\
&=\frac{1}{8}\left[\dfrac{2u^\frac{5}{2}}{5}
+\dfrac{4u^\frac{3}{2}}{3}
-6\sqrt{u}\right]\\
I&=\dfrac{\frac{\left(2x-1\right)^\frac{5}{2}}{5}+\frac{2\left(2x-1\right)^\frac{3}{2}}{3}+\sqrt{2x-1}}{4}-\sqrt{2x-1}
\end{align}
 
Last edited:
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K