What is the internal tangent circle problem for three given circles?

  • Context: MHB 
  • Thread starter Thread starter DaalChawal
  • Start date Start date
  • Tags Tags
    Circle
Click For Summary
SUMMARY

The internal tangent circle problem for three given circles involves finding a circle that touches all three circles internally. The circles in question are defined by their centers and radii: a red circle at (6,8) with radius 5, a blue circle at (-12,9) with radius 10, and a green circle at (0,-8) with radius 3. The exact solution for the internal tangent circle is complex and may not exist; however, a numerical approximation yields a center at (-5.912, 5.002) and a radius of 17.283.

PREREQUISITES
  • Understanding of circle geometry and properties
  • Familiarity with numerical approximation techniques
  • Knowledge of coordinate systems and graphing
  • Experience with mathematical expressions and equations
NEXT STEPS
  • Explore advanced circle packing problems in geometry
  • Learn about numerical methods for solving geometric problems
  • Study the properties of tangent circles and their applications
  • Investigate software tools for geometric visualization, such as GeoGebra
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying advanced geometry concepts, particularly those interested in circle properties and numerical methods.

DaalChawal
Messages
85
Reaction score
0
1644909101070.png


Help in circle touching internally all these three circles.
 
Mathematics news on Phys.org
[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-26.663023386989984,"ymin":-12.46821832312099,"xmax":16.18142239370036,"ymax":23.98932209548482}},"randomSeed":"79bd9e65b9a1a48586c1677c8d4b0ba1","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"x^{2}\\ +\\ y^{2}\\ -\\ 12x\\ -\\ 16y\\ +\\ 75\\ =\\ 0"},{"type":"expression","id":"2","color":"#2d70b3","latex":"x^{2}\\ +\\ y^{2}\\ +\\ 24x\\ -\\ 18y\\ +\\ 125\\ =\\ 0"},{"type":"expression","id":"3","color":"#388c46","latex":"x^{2\\ }+\\ y^{2}\\ +\\ 16y\\ +\\ 55\\ =\\ 0"},{"type":"expression","id":"4","color":"#6042a6","latex":"x^{2}\\ +\\ y^{2}\\ -\\ 25\\ =\\ 0"},{"type":"expression","id":"5","color":"#000000","latex":"x^{2}\\ +\\ y^{2}\\ +\\ 11.824x\\ -\\ 10.004y\\ -\\ 238.73\\ =\\ 0"},{"type":"expression","id":"6","color":"#c74440"}]}}[/DESMOS]
In the diagram, the three given circles are the red one with centre $(6,8)$ and radius $5$, the blue one with centre $(-12,9)$ and radius $10$, and the green one with centre $(0,-8)$ and radius $3$. It should be easy to see that the circle which touches all three of them externally is the purple one with centre at the origin and radius $5$. But it is altogether harder to locate the black circle which touches all three of them internally. In fact, I doubt whether it is possible to find an exact solution. The best I can do is a numerical approximation that gives its centre as $(-5.912,5.002)$ and its radius as $17.283$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K