What is the limit in size that two particles/objects can be entangled?

Click For Summary

Discussion Overview

The discussion revolves around the limits of quantum entanglement in relation to the size of particles or objects. Participants explore theoretical considerations, experimental observations, and the conditions under which entanglement may occur, including temperature and interaction suppression.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions whether matter waves can be entangled, referencing the double slit experiment and the existence of large matter waves.
  • Another participant notes that the largest entities tested in the double slit experiment were molecules with 2000 atoms.
  • Some participants propose that the limit of entanglement is not based on size but rather on reachable quantum phase space, influenced by interactions, time, and temperature.
  • There is a suggestion that entangling larger and heavier objects is possible under specific conditions, such as very low temperatures, short time scales, and in absolute vacuum to minimize interactions.
  • One participant expresses difficulty in understanding the technical details and requests clarification.
  • Another participant uses an analogy of controlling multiple trailers to illustrate the challenges of entanglement control as size increases.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the limits of entanglement, with multiple competing views presented regarding the factors influencing entanglement size and the nature of control in quantum systems.

Contextual Notes

Discussions include assumptions about temperature, interaction suppression, and the complexity of control tasks, which may affect the feasibility of entangling larger objects. No definitive limits are established.

jaketodd
Gold Member
Messages
507
Reaction score
21
What is the limit in size that two particles/objects can be entangled?

With the double slit experiment, I know that there are matter waves, of large size - not just individual photons.

So can a matter wave be entangled with another one, or even just a single particle with the matter wave?

Thanks.

https://en.wikipedia.org/wiki/Matter_wave

https://scholar.google.com/scholar?q=matter+wave+double+slit

https://en.wikipedia.org/wiki/Quantum_entanglement
 
Physics news on Phys.org
  • Like
Likes   Reactions: vanhees71 and Demystifier
jaketodd said:
What is the limit in size that two particles/objects can be entangled?
The limit is not in size, but in reachable quantum phase space (given the relevant interactions, time, and temperature).
(And it is probably not a hard limit either, but an impossibility of the sort of a control chain. A simple model of such a control chain would be that you have to try to control the value of some variable by controlling its n-th (time) derivative, when all you can observe directly is the value itself. For sufficiently big n, this is impossible in practice, despite the absence of a "biggest n" which still can be controlled in theory.)
 
  • Like
  • Informative
Likes   Reactions: vanhees71 and PeroK
gentzen said:
The limit is not in size, but in reachable quantum phase space (given the relevant interactions, time, and temperature).
(And it is probably not a hard limit either, but an impossibility of the sort of a control chain. A simple model of such a control chain would be that you have to try to control the value of some variable by controlling its n-th (time) derivative, when all you can observe directly is the value itself. For sufficiently big n, this is impossible in practice, despite the absence of a "biggest n" which still can be controlled in theory.)
That's way over my head. Please break it down if possible. Thanks
 
jaketodd said:
That's way over my head. Please break it down if possible. Thanks
If you work at very low temperature, then you can entangle very large and heavy objects. And if you work on very short time scales, then you can live with shorter decoherence times, and hence "entangle" larger and heavier objects. ... And if you work in absolute vacuum, and can suppress nearly all possible interactions, then again entangling larger and heavier objects gets possible.
(Additionally, it is hard to come-up with absolute limits for control tasks. Take some simple control example, like driving a car with a trailer backwards. And then imagine not just one trailer, but a chain of n-trailers. At some point this control task will simply overwhelm you, even if there is no fixed theoretical limit.)
 
  • Informative
  • Like
  • Haha
Likes   Reactions: hutchphd, vanhees71, berkeman and 1 other person
gentzen said:
If you work at very low temperature, then you can entangle very large and heavy objects. And if you work on very short time scales, then you can live with shorter decoherence times, and hence "entangle" larger and heavier objects. ... And if you work in absolute vacuum, and can suppress nearly all possible interactions, then again entangling larger and heavier objects gets possible.
(Additionally, it is hard to come-up with absolute limits for control tasks. Take some simple control example, like driving a car with a trailer backwards. And then imagine not just one trailer, but a chain of n-trailers. At some point this control task will simply overwhelm you, even if there is no fixed theoretical limit.)
Awesome! Thanks!
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K