MHB What is the limit of $\frac{n^2}{2^n}$ as $n$ approaches infinity?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Limit
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\displaystyle
L_b=\lim_{x \to \infty}
\left\{\frac{n^2}{2^n}\right\} \implies\frac{\infty}{\infty} \\
\text{take natural log of both sides} \\
\ln\left(L_b{}\right)=\lim_{x \to \infty}
\left\{\frac{2\ln\left({n}\right)}{n\ln\left({2}\right)}\right\} \\
\text{not sure?? } $
 
Physics news on Phys.org
You need to prove that $2^n > n^2$ for large $n$.
 
Why take logs? Why not simply apply L'Hopital's rule to the original limit twice?
 
greg1313 said:
Why take logs? Why not simply apply L'Hopital's rule to the original limit twice?

$\text{thusly..}$
$$\displaystyle
L_b=\lim_{x \to \infty}
\left\{\frac{n^2}{2^n}\right\} $$

$$\displaystyle
L'_b=\lim_{x \to \infty}
\left\{\frac{2n}{2^{n}\ln\left({2}\right)}\right\} $$

$$\displaystyle
L''_b=\lim_{x \to \infty}
\left\{\frac{2}{2^n\ln\left({2}\right)^2}\right\} $$
$x \to \infty$
$$L_b=0$$

- - - Updated - - -

ZaidAlyafey said:
You need to prove that $2^n > n^2$ for large $n$.

Prove?
 
Last edited:
You can use the mathematical induction.
 
whatever that is?
 
karush said:
$\displaystyle
L_b=\lim_{x \to \infty}
\left\{\frac{n^2}{2^n}\right\} \implies\frac{\infty}{\infty} \\
\text{take natural log of both sides} \\
\ln\left(L_b{}\right)=\lim_{x \to \infty}
\left\{\frac{2\ln\left({n}\right)}{n\ln\left({2}\right)}\right\} \\
\text{not sure?? } $
The logarithm of \frac{n^2}{2^n} is not \frac{2ln(n)}{nln(2)}. It is 2ln(n)- n ln(2).
 

Similar threads

Replies
3
Views
3K
Replies
9
Views
2K
Replies
8
Views
1K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
16
Views
4K
Back
Top