What Is the Limit of $t \cos(wt) e^{-st}$ as $t \to \infty$?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary

Discussion Overview

The discussion revolves around finding the limit of the expression $t \cos(wt) e^{-st}$ as $t \to \infty$, particularly in the context of calculating the Laplace transform of the function $t \cos(wt)$ for $w > 0$. Participants explore various mathematical techniques and reasoning related to this limit, including integration by parts and the application of L'Hospital's rule.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants present an integration by parts approach to evaluate the Laplace transform, leading to a limit involving $t \cos(\omega t)$ as $t \to \infty$.
  • It is suggested that if $\mathfrak{Re}(s) > 0$, the exponential term $e^{-st}$ approaches 0 faster than the other terms diverge, implying the limit could be 0.
  • Others propose using L'Hospital's rule and the squeeze theorem to rigorously prove the limit.
  • One participant introduces a complex analysis perspective, relating the integral to the real part of a complex integral and discussing its validity for complex $s$.
  • Another participant mentions that the functions agree for $s > 0$ and discusses the implications of analytic continuation in this context.

Areas of Agreement / Disagreement

Participants express differing views on the necessity of using real and imaginary parts in their calculations, and there is no consensus on the best approach to prove the limit. Some participants agree on the behavior of the exponential term, while others question the validity of certain methods.

Contextual Notes

Some assumptions regarding the behavior of the functions as $t \to \infty$ and the conditions on $s$ are not fully resolved, leading to uncertainty in the conclusions drawn by participants.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! :)
I have to find the Laplace transform of the function $tcos(wt) , w>0 $ .
That's what I have done so far:
$I=\int_{0}^{\infty}e^{-st}tcos(wt)dt=\int_{0}^{\infty}(\frac{-e^{-st}}{s})'tcos(wt)dt=\left [(\frac{-e^{-st}}{s})tcos(wt) \right ]_{0}^{\infty}-\int_{0}^{\infty}(\frac{-e^{-st}}{s}(cos(wt)-sin(wt))dt $

How can I find the limit,when $t\to \infty$ ?
 
Physics news on Phys.org
evinda said:
Hi! :)
I have to find the Laplace transform of the function $tcos(wt) , w>0 $ .
That's what I have done so far:
$I=\int_{0}^{\infty}e^{-st}tcos(wt)dt=\int_{0}^{\infty}(\frac{-e^{-st}}{s})'tcos(wt)dt=\left [(\frac{-e^{-st}}{s})tcos(wt) \right ]_{0}^{\infty}-\int_{0}^{\infty}(\frac{-e^{-st}}{s}(cos(wt)-sin(wt))dt $

How can I find the limit,when $t\to \infty$ ?

Hmm, let's see... according to the rule for partial integration, we have:
$$\int udv = uv - \int vdu$$
So we get:
\begin{aligned}
I &= \int_0^\infty t\cos(\omega t)\ d\left(\frac{-e^{-st}}{s}\right) \\
&= \left[ t\cos\omega t \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int \frac{-e^{-st}}{s} d(t\cos(\omega t)) \\
&= \left[ t\cos(\omega t) \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int_0^\infty \frac{-e^{-st}}{s} (\cos(\omega t) - \omega t \sin(\omega t)) dt
\end{aligned}
When $t \to \infty$ we get:
$$\infty \cdot \cos(\omega \cdot \infty) \cdot \frac{-e^{-s \cdot \infty}}{s}$$
If $\mathfrak{Re}(s) > 0$, the exponential power will approach 0 faster than any of the rest of the expression diverges. So this part of the result is 0.
 
I like Serena said:
Hmm, let's see... according to the rule for partial integration, we have:
$$\int udv = uv - \int vdu$$
So we get:
\begin{aligned}
I &= \int_0^\infty t\cos(\omega t)\ d\left(\frac{-e^{-st}}{s}\right) \\
&= \left[ t\cos\omega t \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int \frac{-e^{-st}}{s} d(t\cos(\omega t)) \\
&= \left[ t\cos(\omega t) \cdot \frac{-e^{-st}}{s} \right]_0^\infty - \int_0^\infty \frac{-e^{-st}}{s} (\cos(\omega t) - \omega t \sin(\omega t)) dt
\end{aligned}
When $t \to \infty$ we get:
$$\infty \cdot \cos(\omega \cdot \infty) \cdot \frac{-e^{-s \cdot \infty}}{s}$$
If $\mathfrak{Re}(s) > 0$, the exponential power will approach 0 faster than any of the rest of the expression. So this part of the result is 0.

But how can I prove it?Using the L'Hospital Rule? :confused:
 
evinda said:
But how can I prove it?Using the L'Hospital Rule? :confused:

Yes.
But first consider that:
$$\frac{-t}{se^{st}} \le t\cos(\omega t) \frac{e^{-st}}{s} \le \frac{+t}{se^{st}}$$
Then apply l'Hospital's rule to both the LHS and the RHS.
Apply the squeeze rule after that.
 
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{-t(s-iw)} \ dt$$

$$ = \text{Re} \Bigg( - \frac{t}{s-iw} e^{-t(s-i \omega)} \Big|^{t=\infty}_{t=0} + \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt \Bigg) = \text{Re} \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt $$

$$ = \text{Re} \frac{1}{(s-i \omega)^{2}} \int_{0}^{\infty} e^{-u} \ du = \text{Re} \ \frac{1}{(s-i \omega)^{2}}$$

$$ = \text{Re} \ \frac{1}{(s-i \omega)^{2}} \frac{(s+i \omega)^{2}}{(s+ i \omega)^{2}} = \text{Re} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$$And now we also know that

$$\int_{0}^{\infty} t \sin( \omega t) e^{-st} \ dt = \text{Im} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{2 \omega s}{(s^{2}+\omega^{2})^{2}} $$
 
I like Serena said:
Yes.
But first consider that:
$$\frac{-t}{se^{st}} \le t\cos(\omega t) \frac{e^{-st}}{s} \le \frac{+t}{se^{st}}$$
Then apply l'Hospital's rule to both the LHS and the RHS.
Apply the squeeze rule after that.

Nice!Thank you very much! :o

- - - Updated - - -

Random Variable said:
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{-t(s-iw)} \ dt$$

$$ = \text{Re} \Bigg( - \frac{t}{s-iw} e^{-t(s-i \omega)} \Big|^{t=\infty}_{t=0} + \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt \Bigg) = \text{Re} \int_{0}^{\infty} \frac{1}{s-i \omega} e^{-t(s-i \omega)} \ dt $$

$$ = \text{Re} \frac{1}{(s-i \omega)^{2}} \int_{0}^{\infty} e^{-u} \ du = \text{Re} \ \frac{1}{(s-i \omega)^{2}}$$

$$ = \text{Re} \ \frac{1}{(s-i \omega)^{2}} \frac{(s+i \omega)^{2}}{(s+ i \omega)^{2}} = \text{Re} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$$And now we also know that

$$\int_{0}^{\infty} t \sin( \omega t) e^{-st} \ dt = \text{Im} \ \frac{s^{2} - w^{2} + 2 i \omega s}{(s^{2}+ \omega^{2})^{2}} = \frac{2 \omega s}{(s^{2}+\omega^{2})^{2}} $$

Great!I found the same result..! Thanks for your answer! :D
 
Let

$$F(\omega) = \int_{0}^{\infty} \sin(\omega t) e^{-st} \ dt=\frac{\omega}{s^2+\omega^2}$$

$$F'(\omega) = \int_{0}^{\infty} t \cos(\omega t) e^{-st} \ dt=\frac{s^2-\omega^2}{(s^2+\omega^2)^2}$$
 
Random Variable said:
If you want to be cute, notice that

$$\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt = \text{Re} \int_{0}^{\infty} t e^{i \omega t}e^{-st} \ dt$$

Can you support that your result also holds for complex $s$?
 
I like Serena said:
Can you support that your result also holds for complex $s$?

Is it necessary to do it with $\text{Re and Im}$ ? :eek: I haven't done it like that!
 
  • #10
evinda said:
Is it necessary to do it with $\text{Re and Im}$ ? :eek: I haven't done it like that!

No, that is not necessary. It is just a cute way to it. :)
And as yet, I am questioning its validity, since it doesn't take complex values of $s$ into account.
 
  • #11
I'm going to take the easy way out of this.

The functions $\int_{0}^{\infty} t \cos (\omega t) e^{-st}$ and $ \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$ agree for $s>0$.

The function $\frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}}$ is analytic for $\text{Re}(s) > 0$.

And by Morera's theorem (in combination with Fubini's theorem) $\int_{0}^{\infty} t \cos (\omega t) e^{-st} \ dt$ is analytic for $\text{Re}(s) > 0$ as well.

So by analytic continuation, they must agree for $\text{Re} (s) > 0 $.
 
Last edited:

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
6K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K