High School What is the maximum value of ac in the given equations?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion focuses on finding the maximum value of the product ac given the equations a² + b² = 16, c² + d² = 25, and ad - bc = 20. Participants share their solutions, demonstrating various approaches to the problem. The correct solutions were provided by members laura123, lfdahl, and kaliprasad, who each presented their methods for solving the equations. The thread emphasizes the importance of understanding the relationships between the variables to maximize ac. Ultimately, the maximum value of ac is a key outcome of the problem-solving process discussed.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Consider the following equations:

$a^2+b^2=16$

$c^2+d^2=25$

$ad-bc=20$

where $a,\,b,\,c,\,d \in R$

Find the maximum value of $ac$.


Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1. laura123
2. lfdahl
3. kaliprasad

Solution from laura123:
Let us consider the points $A(a,b)$ and $B(c,d)$.
Since $a^2+b^2=16$ and $c^2+d^2=25$ it follows that $A$ belongs to a circle with centre $(0,0)$ and radius 4 and $B$ belongs to a circle with centre $O(0,0)$ and radius 5 , as shown in the following figure:
50g8y.jpg

$ad-bc=\overline{OA}\cdot\overline{OB}\cdot\sin\theta=4\cdot 5\cdot\sin\theta=20\sin\theta$.
Since $ad-bc=20$ we have $20\sin\theta=20$ i.e. $\theta=\dfrac{\pi}{2}$.
Let $\alpha$ be the angle that $OA$ makes with the x-axis ($0\leq \alpha<2\pi$) as shown in the following figure:
20rs28p.png

$ac=\overline{OA}\cos\alpha\cdot\overline{OB}\cos\left(\alpha+\dfrac{\pi}{2}\right)=4\cos\alpha\cdot 5\cos\left(\alpha+\dfrac{\pi}{2}\right)=$
$=20\cos\alpha\cos\left(\alpha+\dfrac{\pi}{2}\right)=-20\cos\alpha\sin\alpha=-10\sin 2\alpha$

Therefore, the maximum value of $ac$ is $10$.

Solution from lfdahl:
Define the two dimensional real valued vectors: $\boldsymbol{v_1}= \begin{pmatrix} a\\b\end{pmatrix}$ and $\boldsymbol{v_2}= \begin{pmatrix}c\\d\end{pmatrix}$.

Then the given equations can be expressed as:

$\left \| \boldsymbol{v_1} \right \|^2 =v_1^2= 16$ and $\left \| \boldsymbol{v_2} \right \|^2 =v_2^2= 25$ and $det(\boldsymbol{v_1},\boldsymbol{v_2})=20$.

The last equation expresses the area of the parallelogram spanned by $\boldsymbol{v_1} $ and $\boldsymbol{v_2} $.

With $v_1=4$ and $v_2=5$ this is only possible, if \[\boldsymbol{v_1} \perp \boldsymbol{v_2}\]
- for all possible choices of orthogonal vectors $\boldsymbol{v_1} $ and $\boldsymbol{v_2} $ in the Cartesian plane.

If we let
\[\boldsymbol{v_1}=v_1\begin{pmatrix} cos\alpha \\ sin\alpha \end{pmatrix}, \: \: \: \boldsymbol{v_2}=v_2\begin{pmatrix} -sin\alpha \\ cos\alpha \end{pmatrix},\: \: \: \: 0\leq \alpha < 2\pi\]
then
\[max\left \{ ac \right \}=max\left \{ -v_1v_2cos\alpha sin\alpha \right \}=-\frac{v_1v_2}{2}min\left \{ sin2\alpha \right \}=\frac{v_1v_2}{2}=10.\]

Solution from kaliprasad:
Without loss of generality we can choose
$a=4\sin\,t$
$b=4\cos\,t$
$c=5\sin\,p$
$d=5\cos\,p$

So we get $ad-bc= 20\sin\, t \cos\, p - 20\sin\, p \cos\, t = 20\sin (t-p) = 20$
or $\sin(t-p) = 1$
so $t= p+ \dfrac{\pi}{2}$
Hence
$ac = 20 \ sin \, t \ sin \ p$
= $20 \ sin\, p +\dfrac{\pi}{2} \ sin\, p$
= $-20 \cos \, p \sin\, p$
= $-10 \sin 2p$

Clearly the largest value is 10 and smallest -10.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K