What is the minimal number satisfying this inequality?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
SUMMARY

The minimal number, \( L \), satisfying the inequality \(\frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L\) for positive real numbers \( a, b, c \) and \( s = abc \) has been discussed. The forum participants provided various solutions and insights into the identity involved in the inequality. The consensus indicates that the value of \( L \) can be determined through specific algebraic manipulations and analysis of the terms involved.

PREREQUISITES
  • Understanding of inequalities in algebra
  • Familiarity with positive real numbers and their properties
  • Knowledge of algebraic manipulation techniques
  • Basic concepts of product and summation in mathematics
NEXT STEPS
  • Research advanced techniques in solving algebraic inequalities
  • Study the properties of symmetric functions in multiple variables
  • Explore the application of the AM-GM inequality in similar contexts
  • Learn about the role of identities in mathematical proofs
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving inequalities involving multiple variables will benefit from this discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
 
Mathematics news on Phys.org
lfdahl said:
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$
 
Albert said:
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$

Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
 
lfdahl said:
Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$a=b=c,s=abc=a^3=b^3=c^3$
$\dfrac{a^3+2s}{2a^3+s}=\dfrac{3a^3}{3a^3}=\dfrac{b^3+2s}{2b^3+s}=\dfrac{3b^3}{3b^3}=\dfrac{c^3+2s}{2c^3+s}=\dfrac {3c^3}{3c^3}=1\,\,\, (a,b,c>0)$
 
Solution by other:

We prove that $L = 0$. Let

\[ f(a,b,c) = \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s} + \frac{c^3-s}{2c^3+s} \]

Since $f(t,t,t) = 0, L \geq 0$. Let us prove, that $L \leq 0$, equivalently $f(a,b,c) \leq 0$. Since

\[ f(a,b,c) = \frac{-3a^3s^2-3b^3s^2-3c^3s^2+9s^3}{(2a^3+s)(2b^3+s)(2c^3+s)} = \frac{3s^2(3s-a^3-b^3-c^3)}{ (2a^3+s)(2b^3+s)(2c^3+s)} \]

we have to establish the inequality $3s-a^3-b^3-c^3 \leq 0$ ,
which is an arithmetic-geometric inequality for $a^3,b^3$ and $c^3$ . Done.
 

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K