MHB What is the minimal number satisfying this inequality?

  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary
The discussion revolves around finding the minimal number, L, that satisfies the inequality involving positive real numbers a, b, and c, where s = abc. Participants are engaged in exploring the mathematical identity presented in the inequality and its implications. There is a request for further elaboration on a specific identity mentioned in a provided solution. The conversation highlights the collaborative nature of solving complex mathematical problems. The focus remains on the inequality and its components throughout the discussion.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
 
Mathematics news on Phys.org
lfdahl said:
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$
 
Albert said:
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$

Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
 
lfdahl said:
Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$a=b=c,s=abc=a^3=b^3=c^3$
$\dfrac{a^3+2s}{2a^3+s}=\dfrac{3a^3}{3a^3}=\dfrac{b^3+2s}{2b^3+s}=\dfrac{3b^3}{3b^3}=\dfrac{c^3+2s}{2c^3+s}=\dfrac {3c^3}{3c^3}=1\,\,\, (a,b,c>0)$
 
Solution by other:

We prove that $L = 0$. Let

\[ f(a,b,c) = \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s} + \frac{c^3-s}{2c^3+s} \]

Since $f(t,t,t) = 0, L \geq 0$. Let us prove, that $L \leq 0$, equivalently $f(a,b,c) \leq 0$. Since

\[ f(a,b,c) = \frac{-3a^3s^2-3b^3s^2-3c^3s^2+9s^3}{(2a^3+s)(2b^3+s)(2c^3+s)} = \frac{3s^2(3s-a^3-b^3-c^3)}{ (2a^3+s)(2b^3+s)(2c^3+s)} \]

we have to establish the inequality $3s-a^3-b^3-c^3 \leq 0$ ,
which is an arithmetic-geometric inequality for $a^3,b^3$ and $c^3$ . Done.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
1K