What is the minimal number satisfying this inequality?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the minimal number \( L \) that satisfies a specific inequality involving positive real numbers \( a, b, \) and \( c \), where \( s = abc \). The scope includes mathematical reasoning and problem-solving related to inequalities.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Post 1 presents the inequality and asks for the minimal \( L \) satisfying it.
  • Post 2 reiterates the problem statement, indicating a potential solution is forthcoming.
  • Post 3 mentions a solution but does not provide details, leaving the specifics of the approach unclear.
  • Post 4 requests elaboration on an identity referenced in a previous solution, suggesting that there are important details that need clarification.
  • Post 5 indicates that there is an alternative solution proposed by another participant, though details are not provided.

Areas of Agreement / Disagreement

The discussion appears to have multiple competing views, as participants are presenting different solutions and requesting clarifications on specific identities without reaching a consensus on the minimal \( L \).

Contextual Notes

There are unresolved aspects regarding the identities and solutions mentioned, as well as the assumptions underlying the inequality. The lack of detailed solutions in some posts contributes to the ambiguity of the discussion.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
 
Mathematics news on Phys.org
lfdahl said:
Let $a,b$ and $c$ be positive real numbers, and $s = abc$. Find the minimal number, $L$, satisfying: \[ \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s}+\frac{c^3-s}{2c^3+s} \le L \]
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$
 
Albert said:
my solution:
let :$A=\dfrac{a^3-s}{2a^3+s}+\dfrac{b^3-s}{2b^3+s}+\dfrac{c^3-s}{2c^3+s}$
$=3-(\dfrac{a^3+2s}{2a^3+s}+\dfrac{b^3+2s}{2b^3+s}+\dfrac{c^3+2s}{2c^3+s})$
$\leq 3-3\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=3-3=0=L$
equality occurs at $a=b=c, s=a^3=b^3=c^3$

Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
 
lfdahl said:
Hi, Albert, and thankyou for your nice solution.:cool: Please elaborate on the following identity, which occurs in your answer:

$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$\sqrt [3]{\dfrac{a^3+2s}{2a^3+s}\times\dfrac{b^3+2s}{2b^3+s}\times\dfrac{c^3+2s}{2c^3+s}
}=1$
$a=b=c,s=abc=a^3=b^3=c^3$
$\dfrac{a^3+2s}{2a^3+s}=\dfrac{3a^3}{3a^3}=\dfrac{b^3+2s}{2b^3+s}=\dfrac{3b^3}{3b^3}=\dfrac{c^3+2s}{2c^3+s}=\dfrac {3c^3}{3c^3}=1\,\,\, (a,b,c>0)$
 
Solution by other:

We prove that $L = 0$. Let

\[ f(a,b,c) = \frac{a^3-s}{2a^3+s}+\frac{b^3-s}{2b^3+s} + \frac{c^3-s}{2c^3+s} \]

Since $f(t,t,t) = 0, L \geq 0$. Let us prove, that $L \leq 0$, equivalently $f(a,b,c) \leq 0$. Since

\[ f(a,b,c) = \frac{-3a^3s^2-3b^3s^2-3c^3s^2+9s^3}{(2a^3+s)(2b^3+s)(2c^3+s)} = \frac{3s^2(3s-a^3-b^3-c^3)}{ (2a^3+s)(2b^3+s)(2c^3+s)} \]

we have to establish the inequality $3s-a^3-b^3-c^3 \leq 0$ ,
which is an arithmetic-geometric inequality for $a^3,b^3$ and $c^3$ . Done.
 

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K