MHB What is the minimum sum of fractions with positive numbers and permutations?

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Fractions Sum
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a_1,a_2, ... , a_n$ be positive numbers.

Let $i_1,i_2, ... , i_n$ be a permutation of $1,2,...,n$.

Determine the smallest possible value of the sum:

$$\sum_{k=1}^{n}\frac{a_k}{a_{i_k}}$$
 
Mathematics news on Phys.org
By AM–GM,
$$\sum_{k=1}^n\frac{a_k}{a_{i_k}}\ \ge\ n\cdot\sqrt[n]{\frac{a_1\cdots a_n}{a_{i_1}\cdots a_{i_n}}}\ =\ n.$$
This is attained when $i_k=k$ for $k=1,\ldots,n$ (i.e. when it’s the identity permutation).

Hence the minimum value is $n$.
 
Great job, Olinguito! Thankyou for your participation!(Handshake)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
3
Views
1K
Replies
6
Views
2K
Replies
2
Views
2K
Replies
8
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top