What is the minimum value of this summation with given constraints?

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Minimum Sum
Click For Summary
SUMMARY

The minimum value of the summation \(\sum_{i=1}^{5}x_i\) under the constraints \(x_i \ge 0\) and \(\sum_{i PREREQUISITES

  • Understanding of summation notation and basic algebra
  • Familiarity with absolute value properties
  • Knowledge of optimization techniques in mathematics
  • Basic concepts of inequalities and constraints
NEXT STEPS
  • Explore optimization techniques in linear programming
  • Study the properties of absolute values in mathematical expressions
  • Learn about the application of inequalities in optimization problems
  • Investigate similar summation problems with varying constraints
USEFUL FOR

Mathematicians, students studying optimization problems, and anyone interested in mathematical analysis of summations and constraints.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimum of the sum: \[\sum_{i=1}^{5}x_i\], where $x_i \ge 0$ and $\sum_{i<j}|x_i-x_j| = 1.$
 
Mathematics news on Phys.org
lfdahl said:
Find the minimum of the sum: \[\sum_{i=1}^{5}x_i\], where $x_i \ge 0$ and $\sum_{i<j}|x_i-x_j| = 1.$

Hey lfdahl! ;)

Here's my attempt.

WLOG we can reorder any choice of variables, such that $x_1 \ge x_2 \ge x_3 \ge x_4 \ge x_5$.
Then we get:
$$\sum_{i<j}|x_i - x_j| = \sum_{i<j} x_i - x_j = 4x_1 + 2x_2 + 0x_3 - 2 x_4 - 4 x_5 = 1$$
To most effectively minimize $\sum x_i = x_1 + x_2 + x_3 + x_4 + x_5$, we pick $x_1=\frac 14$ and $x_2=x_3=x_4=x_5=0$.
So the requested minimum is $\frac 14$.
 
I like Serena said:
Hey lfdahl! ;)

Here's my attempt.

WLOG we can reorder any choice of variables, such that $x_1 \ge x_2 \ge x_3 \ge x_4 \ge x_5$.
Then we get:
$$\sum_{i<j}|x_i - x_j| = \sum_{i<j} x_i - x_j = 4x_1 + 2x_2 + 0x_3 - 2 x_4 - 4 x_5 = 1$$
To most effectively minimize $\sum x_i = x_1 + x_2 + x_3 + x_4 + x_5$, we pick $x_1=\frac 14$ and $x_2=x_3=x_4=x_5=0$.
So the requested minimum is $\frac 14$.

Thankyou, I like Serena, very much for your answer! :cool:
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K