What is the moral of conflicting definitions of the Heaviside function?

Click For Summary
SUMMARY

The discussion centers on the conflicting definitions of the Heaviside function and its implications for the delta function in integration. The integral of the delta function over a specified range yields a non-zero result only if the evaluation points \(x_0\) and \(y_0\) lie within the interval \([0, \pi]\). The debate highlights that different definitions of the Heaviside function, such as \(H(0) = \frac{1}{2}\) from Wolfram and \(H(0) = 1\) from Wikipedia, can lead to different interpretations of the delta function's behavior. Ultimately, the consensus is that clarity in definitions is crucial for avoiding contradictions in mathematical analysis.

PREREQUISITES
  • Understanding of the Dirac delta function and its properties.
  • Familiarity with the Heaviside step function and its definitions.
  • Knowledge of double integrals and their applications in physics and engineering.
  • Basic concepts of distribution theory in mathematics.
NEXT STEPS
  • Study the properties of the Dirac delta function in various contexts, including physics and engineering applications.
  • Explore the different definitions of the Heaviside function and their implications in mathematical analysis.
  • Learn about distribution theory and how it relates to the delta function and Heaviside function.
  • Investigate the role of the delta function in solving differential equations and its applications in signal processing.
USEFUL FOR

Mathematicians, physicists, engineers, and students who are working with integrals involving delta functions and Heaviside functions, particularly in the context of signal processing and distribution theory.

Dustinsfl
Messages
2,217
Reaction score
5
Integrating the delta function:
$$
\frac{4}{\pi^2}\int_0^{\pi}\int_0^{\pi}\delta(x - x_0,y - y_0)\sin nx\sin my dxdy
$$
Would the solution be $\frac{4}{\pi^2}\sin nx_0\sin my_0$?
 
Physics news on Phys.org
dwsmith said:
Integrating the delta function:
$$
\frac{4}{\pi^2}\int_0^{\pi}\int_0^{\pi}\delta(x - x_0,y - y_0)\sin nx\sin my dxdy
$$
Would the solution be $\frac{4}{\pi^2}\sin nx_0\sin my_0$?
Yes, provided that $x_0$ and $y_0$ both lie in the interval $[0,\pi]$, otherwise the answer will be $0$.
 
Opalg said:
Yes, provided that $x_0$ and $y_0$ both lie in the interval $[0,\pi]$, otherwise the answer will be $0$.

Wouldn't they need to be in $(0,\pi)$? If $x_{0}=0$ and $y_{0}=0$, I should think you wouldn't get the full "function picking out" feature that the delta function gives you, right? That is, isn't it true that
$$\int_{0}^{1}\delta(x)\,dx=\frac{1}{2}?$$
Or am I being too loose with my notation?
 
Ackbach said:
Wouldn't they need to be in $(0,\pi)$? If $x_{0}=0$ and $y_{0}=0$, I should think you wouldn't get the full "function picking out" feature that the delta function gives you, right? That is, isn't it true that
$$\int_{0}^{1}\delta(x)\,dx=\frac{1}{2}?$$
Or am I being too loose with my notation?
Good point, and I think that the answer may depend on how you want to define the delta "function". If you are thinking of it as a point measure, then it is all concentrated at a single point, and there wouldn't be any question of assigning half of it to each side of that point. But if you are defining it in distributional terms as the limit of increasingly spiky normal distributions, then presumably it would split in half as you suggest. (In the OP's question, the delta function is two-dimensional, so I guess you might need to take half the answer along the sides of the square $[0,1\times[0,1]$, and a quarter at the corners? But since the sin functions vanish along the edges, the answer is going to be zero there anyway!)

The Wikipedia discussion on the delta function is worth looking at.
 
Last edited:
Ackbach said:
Wouldn't they need to be in $(0,\pi)$? If $x_{0}=0$ and $y_{0}=0$, I should think you wouldn't get the full "function picking out" feature that the delta function gives you, right? That is, isn't it true that
$$\int_{0}^{1}\delta(x)\,dx=\frac{1}{2}?$$
Or am I being too loose with my notation?

If You define the $\delta(*)$ function so that is...

$\displaystyle \int_{- \infty}^{t} \delta (t)\ dt = H (t)$ (1)

... where $H(*)$ is the Heaviside Step Function...

Heaviside Step Function -- from Wolfram MathWorld

... Your relation...

$\displaystyle \int_{0}^{1} \delta (t)\ dt = \frac{1}{2}$ (2)

... is correct... Kind regards

$\chi$ $\sigma$
 
chisigma said:
If You define the $\delta(*)$ function so that is...

$\displaystyle \int_{- \infty}^{t} \delta (t)\ dt = H (t)$ (1)

... where $H(*)$ is the Heaviside Step Function...

Heaviside Step Function -- from Wolfram MathWorld

... Your relation...

$\displaystyle \int_{0}^{1} \delta (t)\ dt = \frac{1}{2}$ (2)

... is correct... Kind regards

$\chi$ $\sigma$
True, but note that Wolfram defines the Heaviside function to take the value 1/2 at 0. The Wikipedia article gives the definition $$H(x) = \begin{cases}1&(x\geqslant0),\\ 0&(x<0).\end{cases}$$ That would lead to a delta function with all its weight concentrated on "one side of 0", so to speak.

I think the moral here is that it is necessary to pay attention to the definition used by the book or article that you are working from.
 
Opalg said:
Good point, and I think that the answer may depend on how you want to define the delta "function". If you are thinking of it as a point measure, then it is all concentrated at a single point, and there wouldn't be any question of assigning half of it to each side of that point. But if you are defining it in distributional terms as the limit of increasingly spiky normal distributions, then presumably it would split in half as you suggest. (In the OP's question, the delta function is two-dimensional, so I guess you might need to take half the answer along the sides of the square $[0,1\times[0,1]$, and a quarter at the corners? But since the sin functions vanish along the edges, the answer is going to be zero there anyway!)

The Wikipedia discussion on the delta function is worth looking at.

There is still a problem in defining the delta functional in terms of integrals involving a sequence of reasonably behaved (positive) increasingly "spiky" functions with integral 1. Because we do not have to assume the functions in this sequence are symetric. For instance we could use the sequence:

\[f_n(c)=\left\lbrace \begin{array}{ll} \frac{1}{\sqrt{2\pi}n^{-1}}e^{-x^2/2n^{-2}}& \text{for } x\le 0 \\
\frac{1}{\sqrt{2\pi}(n/2)^{-1}}e^{-x^2/2(n/2)^{-2}}& \text{for } x \gt 0\\ \end{array} \right. \]

That we have a problem with an integral of the form:

\[\int_0^\infty \delta(x) f(x) \;dx\]

can also be seen because the function \(H(x)f(x)\) for most \(f(x)\) of interest is not in our space of test functions for the definition of distributions on \(\mathbb{R}\).

(there appears to be something wrong with our large braces today, ... and now it is rendering correctly for no apparent reason)

CB
 
Last edited:
Opalg said:
True, but note that Wolfram defines the Heaviside function to take the value 1/2 at 0. The Wikipedia article gives the definition $$H(x) = \begin{cases}1&(x\geqslant0),\\ 0&(x<0).\end{cases}$$ That would lead to a delta function with all its weight concentrated on "one side of 0", so to speak.

I think the moral here is that it is necessary to pay attention to the definition used by the book or article that you are working from.

A concept I tried to explain in...

http://www.mathhelpboards.com/f13/never-ending-dispute-2060/#post9448

... is that there exist 'good' and 'bad' basic definitions, in the sense that a 'bad definition' leads, sooner or later, to contraddictions and logic failures and that doesn't happen with a 'good definition'. Now we have two different definitions of H(0), according to 'Monster Wolfram' is H(0)=1/2, according to 'Wiki" is H(0)=1... and we can't exclude that for someone else is H(0)=0... Very well!... which definition is 'good'?... an answer I think can come from the following example...Let consider the time function represented here...

https://www.physicsforums.com/attachments/486._xfImport

... that in term of Heaviside Step Function is written as...

$\displaystyle f(t) = \sum_{n=0}^{\infty} (-1)^{n}\ H(t-n)$ (1)

The Laplace Transform of (1) is computed in standard form as...$\displaystyle \mathcal{L} \{ f(t) \} = \frac{1}{s\ (1 + e^{- s})}$ (2)
Now we obtain f(t) performing the inverse Laplace Transform using the Bromwich Integral...$\displaystyle f(t) = \frac{1}{2\ \pi\ i}\ \int_{\gamma - i\ \infty}^{\gamma + i\ \infty} F(s)\ e^{s\ t}\ ds$ (3)

... where $\gamma$ is a constant that lies on the right respect to all the singularities of F(s). In this case the singularities of F(s) are $s=0$ and $s = (2 n + 1)\ \pi\ i$, i.e. all on the imaginary axis, so that any real $\gamma >0$ is 'good'.

The residue of F(s) in $s=0$ is...$\displaystyle r_{0} = \lim_{ s \rightarrow 0} s\ F(s)\ e^{s t} = \frac{1}{2}$ (4)... and the residue of F(s) in $s= (2 n + 1)\ \pi\ i$ is...$\displaystyle r_{n}= \lim_{ s \rightarrow (2 n + 1)\ \pi\ i} \{ s - (2 n + 1)\ \pi\ i \}\ F(s)\ e^{s t} = \frac{e^{(2 n + 1)\ \pi\ i\ t}}{(2 n + 1)\ \pi\ i} $ (5)

... so that the integral (3) supplies...

$\displaystyle f(t) = \frac{1}{2} + \sum_{n= -\infty}^{+ \infty} r_{n} = \frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac {\sin (2n + 1)\ \pi\ t}{2n + 1}$ (6)

Of course the result is not a surprise, because the (6) is the Fourier Series of the (1). A 'little surprise' however is the fact that the (6) for t= n with n non negative integer converges to $\frac{1}{2}$ and that means that, comparing (1) and (6), we conclude that is $H(0)= \frac{1}{2}$... It seems that the 'good definition' is supplied by 'Monster Wolfram'...

Kind regards$\chi$ $\sigma$
 

Attachments

  • MHB20.PNG
    MHB20.PNG
    490 bytes · Views: 87

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K