What is the name of this geometry theorem?

Click For Summary
SUMMARY

The discussion centers on the ambiguous case of triangle formation given two sides and an angle, specifically under SSA (Side-Side-Angle) conditions. When the side opposite the angle (x) is equal to 10sin(30), exactly one triangle is formed. If x exceeds this value, two triangles can be formed, and if x is less, no triangle exists. This phenomenon is identified as the law of Sines, which governs the conditions under which triangles can be constructed from given measurements.

PREREQUISITES
  • Understanding of the law of Sines in triangle geometry
  • Knowledge of SSA (Side-Side-Angle) triangle conditions
  • Familiarity with trigonometric functions, specifically sine
  • Basic principles of triangle inequality
NEXT STEPS
  • Study the law of Sines in detail, including its derivation and applications
  • Explore the concept of triangle inequality and its implications in geometry
  • Learn about the ambiguous case in triangle construction and its significance
  • Investigate other triangle theorems, such as the law of cosines
USEFUL FOR

Students of geometry, mathematics educators, and anyone interested in understanding triangle properties and construction methods under specific conditions.

barryj
Messages
856
Reaction score
51
In geometry, there is a theorem pertaining to whether given an angle, side, and side gives 0, 1, or 2 triangles. See figure. In the figure, if x = 10sin(30) then there is exactly 1 triangle, if x > 10sin(30) then 2 triangles if x < 10sin(30) then no triangles. I think this has a theorem name or something that I can look up in a tggext book.

img439.jpg
 
Last edited by a moderator:
Mathematics news on Phys.org
I am not sure I get you. Your drawing is no triangle case, right ? Could you draw "2 triangles" case to confirm I get you properly.
 
Last edited by a moderator:
The condition for three sides, A, B, and C to make a triangle is that the sum of any two sides must be greater than the third side. Given an angle and two sides the question is will these form a triangle. There are three conditions depending on how long the "hanging" side is. In my diagram, the hanging side is x the other side is 10, and the angle is 30 deg. If x = 10sin(30) then there will be one right triangle. If x < 10sin(30) then there is no triangle, and if x > 10sin(30) then there will be two triangles. I guess there is not a theorem here, just a problem.
 
Thanks for explanation. Law of cosine
c^2=a^2+b^2-2ab \cos \gamma
Regarding this as quadratic equation of b
b^2-2a \cos \gamma \ b + a^2-c^2 = 0
D/4= (a \cos \gamma)^2 - a^2 + c^2 = ( c- a \sin \gamma )( c + a \sin \gamma)
##a \sin \gamma < c## : b has two real solutions with ##\alpha_1<\frac{\pi}{2}<\alpha_2##
##a \sin \gamma = c## : b has one real solution with ##\alpha=\frac{\pi}{2}##
##a \sin \gamma > c## : b has no real solution

I do not know whether this feature has a specific name or not.
 
Last edited:
  • Like
Likes   Reactions: mathwonk and Lnewqban
barryj said:
In geometry, there is a theorem pertaining to whether given an angle, side, and side gives 0, 1, or 2 triangles. See figure. In the figure, if x = 10sin(30) then there is exactly 1 triangle, if x > 10sin(30) then 2 triangles if x < 10sin(30) then no triangles. I think this has a theorem name or something that I can look up in a tggext book.
I think it is called the law of Sines, since you are given SSA conditions on the triangle. This case is called the ambiguous case because there could be 0,1, 2 triangles.

cbarker1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K