The pattern must be that this is the third member of a series starting
$\dfrac1{81} = \dfrac1{9^2} = 0.\overline{012345679}$,
$\dfrac1{9801} = \dfrac1{99^2} = 0.\overline{00\,01\,02\,03\,04\,05\cdots 96\,97\,99}$,
$\dfrac1{998\,001} = \dfrac1{999^2} = 0.\overline{000\,001\,002\,003\,004\,005\cdots 996\,997\,999}$.
You can sort of see why this works if you consider the binomial series
$(1-x)^{-2} = 1+2x+3x^2+4x^3+5x^4+\ldots$,
with $x = 1/10^k$. For example, if $k=1$ you get
$$\begin{aligned}\tfrac1{81} = 9^{-2} = (10-1)^{-2} &= \tfrac1{100}\bigl(1-\tfrac1{10}\bigr)^{-2} \\ &= \tfrac1{100}\bigl(1 + \tfrac2{10} + \tfrac3{100} +\tfrac4{1000} + \ldots\bigr).\end{aligned}$$
That gives you $\frac1{81} = 0.01234...$. The trouble starts when you have to try to justify why the 8 gets left out, and why the decimal starts to recur after the 9.