MHB What is the perimeter of triangle ABC?

AI Thread Summary
To find the perimeter of triangle ABC with vertices A(1, 1), B(9, 3), and C(3, 5), the distance formula is used to calculate the lengths of all three sides, which are then summed. For the second part, the perimeter of the triangle formed by the midpoints of the sides is determined by first calculating the midpoints using the midpoint formula and then finding the distances between these midpoints. The ratio of the perimeters from part one to part two is set up as R = (perimeter of part 1)/(perimeter of part 2). It is noted that the desired ratio is 2:1, indicating that the perimeter of the triangle formed by the midpoints is half that of triangle ABC. This exercise combines principles of geometry and algebra, stemming from a precalculus context.
mathdad
Messages
1,280
Reaction score
0
The vertices of triangle ABC are A(1, 1), B(9, 3), and
C(3, 5).

1. Find the perimeter of triangle ABC.

I must use the distance formula for points on the xy-plane to find all three sides. I then add all three sides. Correct?

2. Find the perimeter of the triangle that is formed by joining the midpoints of the three sides of triangle ABC.

I am not too sure about part 2.

3. Compute the ratio of the perimeter in part 1 to the perimeter in part 2.

I will let R = ratio.

The set up for part 3 is

R = (perimeter of part 1)/(perimeter of part 2)

Correct? I cannot do part 3 without computing part 2, which I don't know how to do.
 
Mathematics news on Phys.org
RTCNTC said:
The vertices of triangle ABC are A(1, 1), B(9, 3), and
C(3, 5).

1. Find the perimeter of triangle ABC.

I must use the distance formula for points on the xy-plane to find all three sides. I then add all three sides. Correct?

Correct.

RTCNTC said:
2. Find the perimeter of the triangle that is formed by joining the midpoints of the three sides of triangle ABC.

A sheet of graph paper will be handy for this exercise. Mathematically, the coordinates of a midpoint may be found with

$$x_M=\frac{x_1+x_2}{2},\quad y_M=\frac{y_1+y_2}{2}$$

RTCNTC said:
3. Compute the ratio of the perimeter in part 1 to the perimeter in part 2.

I will let R = ratio.

The set up for part 3 is

R = (perimeter of part 1)/(perimeter of part 2)

Correct?

Correct. You may also write

$$P_1:P_2$$

As a hint, the desired ratio is 2:1.
 
1. Use the distance formula to find the distance between all 3 sides. Add all three sides. Adding all three sides yields perimeter 1.

2. Use the midpoint formula to find the midpoint of the distance between the three given points.

3. Find the distance between the 3 midpoints found in part 2 above. Add all 3 sides. This yields perimeter 2.

4. The ratio = (perimeter 1)/(perimeter 2)

This exercise is related more to geometry mixed with algebra. Correct? I did not post in the geometry forum because the question is from David Cohen's precalculus textbook.
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
13
Views
4K
Replies
2
Views
2K
Replies
1
Views
943
Replies
2
Views
1K
Replies
1
Views
1K
Replies
5
Views
2K
Back
Top