MHB What Is the Probability of Guessing Correctly on a Multiple Choice Test?

Amad27
Messages
409
Reaction score
1
A test consists of 10 multiple choice questions with five choices for each question. As an experiment, you GUESS on each and every answer without even reading the questions.
What is the probability of getting exactly 6 questions correct on this test?

The answer is: $$\binom{10}{6} (0.2)^6 (0.8)^4$$

I see that, there $\binom{10}{6}$ ways of selecting $6$ correct questions here.

But then, take a question like:At a soccer match there are 230 all-stars and 220 half-stars. You pick five people from the crowd. What is the probability that exactly two are all-stars?

I would say:

$$P = \frac{\binom{230}{2} \cdot \binom{220}{3}}{\binom{450}{5}}$$

My question is, arent there also many ways to choose the $2$ all stars out of the $230$? So wouldn't you multiply by $\binom{230}{2}$ again?
 
Mathematics news on Phys.org
Olok said:
My question is, arent there also many ways to choose the $2$ all stars out of the $230$? So wouldn't you multiply by $\binom{230}{2}$ again?

Hi Olok,

I'm not sure I understand your question.
$\binom{230}{2}$ is the number of ways to choose the $2$ all stars out of the $230$, which is a pretty large number.
What is the reason you think we should multiply by it twice?

Btw, your second formula represents the hypergeometric distribution instead of the binomial distribution. (Nerd)
 
I like Serena said:
Hi Olok,

I'm not sure I understand your question.
$\binom{230}{2}$ is the number of ways to choose the $2$ all stars out of the $230$, which is a pretty large number.
What is the reason you think we should multiply by it twice?

Btw, your second formula represents the hypergeometric distribution instead of the binomial distribution. (Nerd)
No, because in the first one, we multiply by $\binom{n}{k}$ because the order matters, doesn't the order also matter in the second one?

I think I am messing this all up.

Are you using these definitions to solve probability like this? Like the definition of hypergeometric distribution, binomial distribution? Is it by definition that we use that?
 
Olok said:
No, because in the first one, we multiply by $\binom{n}{k}$ because the order matters, doesn't the order also matter in the second one?

I think I am messing this all up.

Whether order matters or not can be a bit confusing.
Actually, in both of these cases, we say that order does not matter.

For instance in the first case, it doesn't matter which of the questions are right, only how many of them.
Now suppose we want to know the probability that exactly the first 6 questions are right and the last 4 questions are wrong.
Then the order does matter and the probability is $0.2^6 \cdot 0.8^4$.
But since the order does not matter, the probability goes up by $\binom{10}{6}$, since that is the number of different configurations to have 6 questions right.
Are you using these definitions to solve probability like this? Like the definition of hypergeometric distribution, binomial distribution? Is it by definition that we use that?

The relevant definition, if we want to call it that, is that
$$P(\text{Desirable outcome}) = \frac{\text{Number of desirable outcomes}}{\text{Total number of outcomes}}$$
(Fine print: that is under the assumption that all outcomes are equally likely.)

The formulas are derived from that. Once you have them, it's easiest to use them rather than derive them again.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top