What Is the Probability That Intersection of Random Samples Has Size 1?

  • Context: Undergrad 
  • Thread starter Thread starter Monte_Carlo
  • Start date Start date
  • Tags Tags
    Random Sampling Set
Click For Summary
SUMMARY

The forum discussion centers on calculating the probability that the intersection of two random samples A and B, drawn from a set S of size n, contains exactly one element. The initial conjecture proposed a formula: [2^(n-1) * (2^n - 2) + n] / 2^(n+1). However, the discussion evolved to a more refined approach using combinatorial methods, ultimately leading to the probability formula: p = (n * C(n-1, |A|-1) * C(n-|A|, |B|-1)) / (C(n, A) * C(n, B)), where C denotes the binomial coefficient. This highlights the importance of understanding combinatorial arrangements in probability calculations.

PREREQUISITES
  • Understanding of basic probability theory
  • Familiarity with combinatorial mathematics, specifically binomial coefficients
  • Knowledge of set theory and intersections
  • Ability to manipulate mathematical formulas and expressions
NEXT STEPS
  • Study combinatorial probability, focusing on binomial coefficients and their applications
  • Explore advanced topics in set theory, particularly intersections and unions of sets
  • Learn about Monte Carlo methods for probabilistic simulations
  • Investigate applications of probability in statistical sampling techniques
USEFUL FOR

Mathematicians, statisticians, data scientists, and anyone interested in probability theory and combinatorial analysis will benefit from this discussion.

Monte_Carlo
Messages
70
Reaction score
0
Hello,

I don't really know if this is considered a challenging problem but this is not for homework:

You're given a set of numbers S of size n. From S, you draw a random sample A, |A| < n. From S, you draw a random sample B, |B| < n. Sampling doesn't remove items from S. What is the probability that intersection of A and B has size 1?

Monte
 
Physics news on Phys.org
Monte_Carlo said:
Hello,

I don't really know if this is considered a challenging problem but this is not for homework:

You're given a set of numbers S of size n. From S, you draw a random sample A, |A| < n. From S, you draw a random sample B, |B| < n. Sampling doesn't remove items from S. What is the probability that intersection of A and B has size 1?

Monte

I didn't finish the problem but I made a good start. I think the probability is

[ 2^(n-1) * (2^n - 2) + n ] / 2^(n+1)

The general idea is to create a multiplication table with all the subsets as row and column headers; then fill in the intersections. When you do this, you can then count the singletons by row. By convention you order the subsets as the empty set first, then all the singletons, etc. That part doesn't matter except that I want the first and last rows of the multiplication table to be the empty set and the entire set, respectively, for the following discussion.

There are 2^n subsets, so we have a 2^n X 2^n table whose grids are filled in with the intersection of the row and column header.

With the convention that the empty set is the top row, the top row of the table contains zero singletons; since every set intersected with the empty set is empty.

The bottom row is the entire set S, which acts as an identity for the operation of set intersection. So the bottom row contains exactly n singletons, one for each element of the set S.

There are 2^n - 2 remaining rows. (There are 2^n total rows, minus the top and bottom).

Claim/guess/conjecture: Each of these remaining rows (not the top, not the bottom) contains exactly 2^(n-1) singletons. This part has to be proved. In other words for each row, exactly half of the intersections are singletons.

If this is true then the total number of singletons is the number of non-top/bottom rows, which is 2^n - 2; times the number of singletons for each of those rows, which is 2^(n-1); plus the singletons in the bottom row, which is n. The sum of those three terms is the total number of singletons; and to get the probability you just divide by the total number of possible pairings of 2^n subsets, which is 2^(n+1).

Perhaps something I wrote will inspire someone to see through to the end of this.

(edit) My conjecture's wrong, but there's a pattern to how many singletons there are per row. It amounts to asking: for a given subset of a set, how many other subsets contain exactly one of the elements of the first set and no others. For example for some S with more than 3 elements, if you pick the subset {1,2,3}, you are asking: how many other subsets of S contain exactly one of either 1, 2, or 3. This sounds like it must be a well-known combinatorial problem.
 
Last edited:
Here is a combinatorial approach. We will assume |A| + |B| \leq n + 1.

There are \binom{n}{A} \binom{n}{B} ways to select the two subsets, all of which we assume are equally likely. We want to count the number of arrangements in which A and B have exactly one element in common. There are n ways to pick the common element. Then there are \binom{n-1}{|A|-1} ways to select the remaining elements of A. Except for the one common element, A and B are disjoint, so there are \binom{n-|A|}{|B|-1} ways to pick the remaining elements of B. So there are
n \binom{n-1}{|A|-1} \binom{n-|A|}{|B|-1}
ways to pick the elements of A and B, and the probability that A and B will have exactly one element in common is
p = \frac{n \binom{n-1}{|A|-1} \binom{n-|A|}{|B|-1}}{\binom{n}{A} \binom{n}{B}}
which simplifies to
p = \frac{|A| \; |B| \; (n-|A|)! \; (n - |B|)!} {(n - |A| - |B| + 1)! \; n!}
 
Could you check your logic with the actual computation? I know the answer is correct, but I'm not quite sure it follows from your calculation.
 
Never mind, I got it.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K