What is the Product of a Lot of Cosines?

  • Context: MHB 
  • Thread starter Thread starter caffeinemachine
  • Start date Start date
  • Tags Tags
    Product
Click For Summary

Discussion Overview

The discussion revolves around evaluating the product of cosines, specifically the expression $\displaystyle P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$. Participants explore various methods to simplify this product, including the evaluation of a related product of sines and the use of Euler's formula.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant suggests evaluating $\displaystyle Q=\prod_{j=1}^{2008}\cos\left(\frac{2\pi j}{2009}\right)$ first to simplify the calculation of $P$.
  • Another participant proposes using Euler's formula to express the cosine in terms of exponential functions, leading to a geometric series.
  • A different method is introduced that involves relating the products of cosines and sines, leading to a formula for $PQ$ and ultimately suggesting $P=\frac{1}{2^{1004}}$.
  • Participants express appreciation for the methods shared, with one noting the elegance of the LaTeX formatting used in the explanations.
  • There are mentions of difficulties accessing external links provided for further reading.

Areas of Agreement / Disagreement

Participants share various methods and approaches, but there is no consensus on a single method or final answer. Multiple competing views and techniques remain present in the discussion.

Contextual Notes

Some participants express uncertainty about the necessity of using Euler's formula and explore alternative methods without it. The discussion includes complex mathematical expressions that may depend on specific interpretations or assumptions.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Hello MHB. I need help with the follwoing:

Evaluate $\displaystyle P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$.

I think it would be easier to first evaluate $\displaystyle Q=\prod_{j=1}^{2008}\cos\left(\frac{2\pi j}{2009}\right)$. Knowing the value of $Q$ we can easily find the value of $P$.

Can anybody help?
 
Mathematics news on Phys.org
caffeinemachine said:
Hello MHB. I need help with the follwoing:

Evaluate $\displaystyle P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$.

I think it would be easier to first evaluate $\displaystyle Q=\prod_{j=1}^{2008}\cos\left(\frac{2\pi j}{2009}\right)$. Knowing the value of $Q$ we can easily find the value of $P$.

Can anybody help?

Hi caffeinemachine! :)

When you write $$\cos\left(\frac{2\pi j}{2009}\right) = \frac 1 2 \left(e^{2\pi i j/2009} + e^{-2\pi i j/2009}\right)$$, you can simplify P into a sum that turns out to be a geometric series with almost everything canceling...
 
I like Serena said:
Hi caffeinemachine! :)

When you write $$\cos\left(\frac{2\pi j}{2009}\right) = \frac 1 2 \left(e^{2\pi i j/2009} + e^{-2\pi i j/2009}\right)$$, you can simplify P into a sum that turns out to be a geometric series with almost everything canceling...
Thank you I Like Serena. This solved the problem. :)
Wonder how can we do it without invoking Euler's Formula.
 
caffeinemachine said:
Hello MHB. I need help with the follwoing:

Evaluate $\displaystyle P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$.

I think it would be easier to first evaluate $\displaystyle Q=\prod_{j=1}^{2008}\cos\left(\frac{2\pi j}{2009}\right)$. Knowing the value of $Q$ we can easily find the value of $P$.

Can anybody help?

Hi caffeinemachine,

I like Serena
's proposed method is great, of course, but I've another method in mind that I want to share with you.

$$P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$$

$$P=\cos\left(\frac{2\pi }{2009}\right)\cos\left(\frac{4\pi }{2009}\right)\cos\left(\frac{6\pi }{2009}\right)\cdots\cos\left(\frac{2008\pi }{2009}\right)$$

Let

$$Q=\prod_{j=1}^{1004}\sin\left(\frac{2\pi j}{2009}\right)$$

$$Q=\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

Hence

$$PQ=\frac{1}{2^{1004}}\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}\small\left(\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)\right)\left(\sin\left(\frac{2012\pi }{2009}\right)\sin\left(\frac{2016\pi }{2009}\right)\sin\left(\frac{2020\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)\right)$$

Note that

$$\sin\left(\frac{2012\pi }{2009}\right)=\sin\left(2\pi-\frac{2006\pi }{2009}\right)=-\sin\left(\frac{2006\pi }{2009}\right)$$

and

$$\sin\left(\frac{2016\pi }{2009}\right)=\sin\left(2\pi-\frac{2002\pi }{2009}\right)=-\sin\left(\frac{2002\pi }{2009}\right)$$ and so on and so forth,

it's obvious that

$$PQ=\frac{1}{2^{1004}}(-1)^{502}\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}Q$$

$$\therefore P=\frac{1}{2^{1004}}$$

P.S. You might want to read this thread as well!http://mathhelpboards.com/trigonometry-12/simplify-cos-cos-2a-cos-3a-cos-999a-if-%3D-2pi-1999-a-253.html
 
anemone said:
Hi caffeinemachine,

I like Serena
's proposed method is great, of course, but I've another method in mind that I want to share with you.

$$P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$$

$$P=\cos\left(\frac{2\pi }{2009}\right)\cos\left(\frac{4\pi }{2009}\right)\cos\left(\frac{6\pi }{2009}\right)\cdots\cos\left(\frac{2008\pi }{2009}\right)$$

Let

$$Q=\prod_{j=1}^{1004}\sin\left(\frac{2\pi j}{2009}\right)$$

$$Q=\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

Hence

$$PQ=\frac{1}{2^{1004}}\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}\small\left(\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)\right)\left(\sin\left(\frac{2012\pi }{2009}\right)\sin\left(\frac{2016\pi }{2009}\right)\sin\left(\frac{2020\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)\right)$$

Note that

$$\sin\left(\frac{2012\pi }{2009}\right)=\sin\left(2\pi-\frac{2006\pi }{2009}\right)=-\sin\left(\frac{2006\pi }{2009}\right)$$

and

$$\sin\left(\frac{2016\pi }{2009}\right)=\sin\left(2\pi-\frac{2002\pi }{2009}\right)=-\sin\left(\frac{2002\pi }{2009}\right)$$ and so on and so forth,

it's obvious that

$$PQ=\frac{1}{2^{1004}}(-1)^{502}\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}Q$$

$$\therefore P=\frac{1}{2^{1004}}$$

P.S. You might want to read this thread as well!http://mathhelpboards.com/trigonometry-12/simplify-cos-cos-2a-cos-3a-cos-999a-if-%3D-2pi-1999-a-253.html
That's masterful. And very nicely typed in LaTeX. I was wondering why anemone has not yet answered this question. :)
 
anemone said:
Hi caffeinemachine,

I like Serena
's proposed method is great, of course, but I've another method in mind that I want to share with you.

$$P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$$

$$P=\cos\left(\frac{2\pi }{2009}\right)\cos\left(\frac{4\pi }{2009}\right)\cos\left(\frac{6\pi }{2009}\right)\cdots\cos\left(\frac{2008\pi }{2009}\right)$$

Let

$$Q=\prod_{j=1}^{1004}\sin\left(\frac{2\pi j}{2009}\right)$$

$$Q=\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

Hence

$$PQ=\frac{1}{2^{1004}}\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}\small\left(\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)\right)\left(\sin\left(\frac{2012\pi }{2009}\right)\sin\left(\frac{2016\pi }{2009}\right)\sin\left(\frac{2020\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)\right)$$

Note that

$$\sin\left(\frac{2012\pi }{2009}\right)=\sin\left(2\pi-\frac{2006\pi }{2009}\right)=-\sin\left(\frac{2006\pi }{2009}\right)$$

and

$$\sin\left(\frac{2016\pi }{2009}\right)=\sin\left(2\pi-\frac{2002\pi }{2009}\right)=-\sin\left(\frac{2002\pi }{2009}\right)$$ and so on and so forth,

it's obvious that

$$PQ=\frac{1}{2^{1004}}(-1)^{502}\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$

$$PQ=\frac{1}{2^{1004}}Q$$

$$\therefore P=\frac{1}{2^{1004}}$$

P.S. You might want to read this thread as well!http://mathhelpboards.com/trigonometry-12/simplify-cos-cos-2a-cos-3a-cos-999a-if-%3D-2pi-1999-a-253.html

I am unable to access the link above.
 
kaliprasad said:
I am unable to access the link above.

Try this link:

http://mathhelpboards.com/trigonometry-12/simplify-cos-cos-2a-cos-3a-cos-999a-if-2pi-1999-a-253.html
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
725
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K