caffeinemachine said:
Hello MHB. I need help with the follwoing:
Evaluate $\displaystyle P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$.
I think it would be easier to first evaluate $\displaystyle Q=\prod_{j=1}^{2008}\cos\left(\frac{2\pi j}{2009}\right)$. Knowing the value of $Q$ we can easily find the value of $P$.
Can anybody help?
Hi
caffeinemachine,
I like Serena's proposed method is great, of course, but I've another method in mind that I want to share with you.
$$P=\prod_{j=1}^{1004}\cos\left(\frac{2\pi j}{2009}\right)$$
$$P=\cos\left(\frac{2\pi }{2009}\right)\cos\left(\frac{4\pi }{2009}\right)\cos\left(\frac{6\pi }{2009}\right)\cdots\cos\left(\frac{2008\pi }{2009}\right)$$
Let
$$Q=\prod_{j=1}^{1004}\sin\left(\frac{2\pi j}{2009}\right)$$
$$Q=\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$
Hence
$$PQ=\frac{1}{2^{1004}}\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)$$
$$PQ=\frac{1}{2^{1004}}\small\left(\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{8\pi }{2009}\right)\sin\left(\frac{12\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)\right)\left(\sin\left(\frac{2012\pi }{2009}\right)\sin\left(\frac{2016\pi }{2009}\right)\sin\left(\frac{2020\pi }{2009}\right)\cdots\sin\left(\frac{4016\pi }{2009}\right)\right)$$
Note that
$$\sin\left(\frac{2012\pi }{2009}\right)=\sin\left(2\pi-\frac{2006\pi }{2009}\right)=-\sin\left(\frac{2006\pi }{2009}\right)$$
and
$$\sin\left(\frac{2016\pi }{2009}\right)=\sin\left(2\pi-\frac{2002\pi }{2009}\right)=-\sin\left(\frac{2002\pi }{2009}\right)$$ and so on and so forth,
it's obvious that
$$PQ=\frac{1}{2^{1004}}(-1)^{502}\sin\left(\frac{2\pi }{2009}\right)\sin\left(\frac{4\pi }{2009}\right)\sin\left(\frac{6\pi }{2009}\right)\cdots\sin\left(\frac{2008\pi }{2009}\right)$$
$$PQ=\frac{1}{2^{1004}}Q$$
$$\therefore P=\frac{1}{2^{1004}}$$
P.S. You might want to read this thread as well!http://mathhelpboards.com/trigonometry-12/simplify-cos-cos-2a-cos-3a-cos-999a-if-%3D-2pi-1999-a-253.html