What is the product of polylogarithms in a series?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
Click For Summary

Discussion Overview

The discussion centers around the evaluation of the integral involving the product of polylogarithms, specifically the expression $$\int^1_0 \mathrm{Li}_p(x) \mathrm{Li}_q(x) \mathrm{Li}_r(x) \,dx$$ Participants explore various approaches to derive a general formula for this integral, examining specific cases and related series expansions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant initiates the discussion by referencing previous work and expressing uncertainty about deriving a general formula for the integral of the product of polylogarithms.
  • Another participant suggests starting with the simpler case of $$\int^1_0 \mathrm{Li}_p(x)\,dx$$ and provides a method involving integration by parts, leading to a recursive relation with the Riemann zeta function.
  • Further contributions detail the evaluation of integrals of the form $$\int^1_0 x^{n-1} \mathrm{Li}_p(x)\,dx$$ and derive expressions involving sums of zeta functions and harmonic numbers.
  • Participants discuss the implications of setting specific values for parameters in the integrals, leading to different forms of the results.
  • One participant introduces a series related to $$\sum_{n=1}^\infty \frac{1}{n^q(n+1)^k}$$ and explores its relationship to polylogarithmic functions and logarithmic integrals.

Areas of Agreement / Disagreement

The discussion does not reach a consensus on a general formula for the integral of the product of polylogarithms. Multiple approaches and perspectives are presented, with participants building on each other's contributions without resolving the overarching question.

Contextual Notes

Participants express various assumptions and conditions in their calculations, including dependencies on the values of parameters and the convergence of series. Some steps in the derivations remain unresolved or are contingent on further exploration.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
As a continuation on the work done on this http://mathhelpboards.com/calculus-10/generalization-triple-higher-power-polylog-integrals-8044.html. In this thread we are looking at the product

$$\int^1_ 0 \mathrm{Li}_p(x) \mathrm{Li}_q(x) \mathrm{Li}_r(x) \,dx$$​

This is not a tutorial as I have no idea how to solve for a general formula. I'll keep posting my attempts on it. As always all other attempts and suggestions are welcomed.
 
Physics news on Phys.org
Start by the easiest case

$$\int^1_0 \mathrm{Li}_p(x)\,dx $$

Integrate by parts

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\int^1_0 \mathrm{Li}_{p-1}(x) \,dx $$

Continuing this way we get the following

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\cdots +(-1)^k\zeta(p-k)-(-1)^k\int^1_0 \mathrm{Li}_{p-k-1}(x)\,dx $$

Now let $p-k = 2$$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\cdots (-1)^p \zeta(2)-(-1)^p\int^1_0 \mathrm{Li}_{1}(x) \, dx $$$$\int^1_0 \mathrm{Li}_p(x)\,dx = \sum_{k=2}^p (-1)^{p+k}\zeta(k)+(-1)^p\int^1_0 \log(1-x)\,dx $$

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \sum_{k=2}^p (-1)^{k+p}\zeta(k)-(-1)^p $$
 
Last edited:
Now let us look at the integral

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx$$

This can be written as

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx = \sum _{k=0}^\infty \frac{1}{k^p} \int^1_0x^{k+n}\,dx = \sum _{k=1}^\infty \frac{1}{k^p(n+k)}\,dx $$

We already proved that

$$\sum _{k=1}^\infty \frac{1}{k^p(n+k)}\,dx=\sum_{k=1}^{p-1}(-1)^{n-1}\frac{\zeta(p-k+1)}{n^k}+(-1)^{p-1}\frac{H_n}{k^p}$$

Hence we have

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^k}+(-1)^{p-1}\frac{H_n}{n^p}$$

Setting $n=1$ we get our integral $$\int^1_0 \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}{\zeta(p-k+1)}+(-1)^{p-1}$$

The sum can be converted to

$$\int^1_0 \mathrm{Li}_p(x)\,dx=\sum_{k=2}^{p}(-1)^{k+p}{\zeta(k)}+(-1)^{p-1}$$
 
We proved that

$$\int^1_0 x^{n}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{(n+1)^k}+(-1)^{p-1}\frac{H_n}{(n+1)^p}$$

Now divide by $n^q$$$\int^1_0 \frac{x^n}{n^q}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^q(n+1)^k}+(-1)^{p-1}\frac{H_n}{n^q(n+1)^p}$$

Sum with respect to $n$

$$\int^1_0 \mathrm{Li}_q(x) \mathrm{Li}_p(x)\,dx= \sum_{n=1}^\infty\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^q(n+1)^k}+(-1)^{p-1}\sum_{n=1}^\infty\frac{H_n}{n^q(n+1)^p}$$

Next we look at the sum

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k}$$
 
Now we look at the series

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k}$$

First notice that

$$\int^1_0 x^n \,dx= \frac{1}{n+1} $$

By induction we get

$$\frac{(-1)^{k-1}}{(k-1)!}\int^1_0 x^n \log^{k-1}(x)\,dx= \frac{1}{(n+1)^k} $$

Hence we get the series

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \frac{(-1)^{k-1}}{(k-1)!}\int^1_0\sum_{n=1}^\infty\frac{1}{n^q} x^n \log^{k-1}(x)\,dx $$

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \frac{(-1)^{k-1}}{(k-1)!}\int^1_0\mathrm{Li}_q(x) \log^{k-1}(x)\,dx $$

Now let us look at the following

$$\sum_{n=1}H_n^{(q)} x^n = \frac{\mathrm{Li}_q(x)}{1-x}$$

Or we have

$$\sum_{n=1}H_n^{(q)} (1-x)x^n =\mathrm{Li}_q(x)$$

$$\sum_{n=1}H_n^{(q)} \int^1_0 x^n(1-x)\log^{k-1}(x)\,dx =\int^1_0\mathrm{Li}_q(x)\log^{k-1}(x) \,dx$$

Eventually we get that

$$\frac{(-1)^{k-1}}{(k-1)!}\int^1_0 x^n(1-x)\log^{k-1}(x)\,dx = \frac{1}{(n+1)^k}-\frac{1}{(n+2)^k} $$

Finally we get

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \sum_{n=1}^\infty\frac{H_n^{(q)}}{(n+1)^k}-\frac{H_n^{(q)}}{(n+2)^k} $$
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
7K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
14K
  • · Replies 14 ·
Replies
14
Views
19K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
15K
  • · Replies 12 ·
Replies
12
Views
3K