What is the product of polylogarithms in a series?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the evaluation of the integral involving polylogarithms, specifically the product of three polylogarithmic functions, represented as $$\int^1_0 \mathrm{Li}_p(x) \mathrm{Li}_q(x) \mathrm{Li}_r(x) \,dx$$. The participants derive a series of equations leading to the integral $$\int^1_0 \mathrm{Li}_p(x) \,dx$$, utilizing integration by parts and the Riemann zeta function, $$\zeta(p)$$. The final expression for the integral is established as a summation involving alternating signs and zeta values, providing a pathway for further exploration of polylogarithmic integrals.

PREREQUISITES
  • Understanding of polylogarithmic functions, specifically $$\mathrm{Li}_p(x)$$.
  • Familiarity with integration techniques, particularly integration by parts.
  • Knowledge of the Riemann zeta function, $$\zeta(p)$$.
  • Basic concepts of series and summation in calculus.
NEXT STEPS
  • Explore the properties and applications of polylogarithmic functions in mathematical analysis.
  • Study the integration techniques involving special functions and their implications in calculus.
  • Investigate the relationship between polylogarithms and the Riemann zeta function.
  • Learn about advanced series convergence and manipulation techniques in mathematical series.
USEFUL FOR

Mathematicians, calculus students, and researchers interested in advanced integral calculus, particularly those working with special functions and series expansions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
As a continuation on the work done on this http://mathhelpboards.com/calculus-10/generalization-triple-higher-power-polylog-integrals-8044.html. In this thread we are looking at the product

$$\int^1_ 0 \mathrm{Li}_p(x) \mathrm{Li}_q(x) \mathrm{Li}_r(x) \,dx$$​

This is not a tutorial as I have no idea how to solve for a general formula. I'll keep posting my attempts on it. As always all other attempts and suggestions are welcomed.
 
Physics news on Phys.org
Start by the easiest case

$$\int^1_0 \mathrm{Li}_p(x)\,dx $$

Integrate by parts

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\int^1_0 \mathrm{Li}_{p-1}(x) \,dx $$

Continuing this way we get the following

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\cdots +(-1)^k\zeta(p-k)-(-1)^k\int^1_0 \mathrm{Li}_{p-k-1}(x)\,dx $$

Now let $p-k = 2$$$\int^1_0 \mathrm{Li}_p(x)\,dx = \zeta(p)-\cdots (-1)^p \zeta(2)-(-1)^p\int^1_0 \mathrm{Li}_{1}(x) \, dx $$$$\int^1_0 \mathrm{Li}_p(x)\,dx = \sum_{k=2}^p (-1)^{p+k}\zeta(k)+(-1)^p\int^1_0 \log(1-x)\,dx $$

$$\int^1_0 \mathrm{Li}_p(x)\,dx = \sum_{k=2}^p (-1)^{k+p}\zeta(k)-(-1)^p $$
 
Last edited:
Now let us look at the integral

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx$$

This can be written as

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx = \sum _{k=0}^\infty \frac{1}{k^p} \int^1_0x^{k+n}\,dx = \sum _{k=1}^\infty \frac{1}{k^p(n+k)}\,dx $$

We already proved that

$$\sum _{k=1}^\infty \frac{1}{k^p(n+k)}\,dx=\sum_{k=1}^{p-1}(-1)^{n-1}\frac{\zeta(p-k+1)}{n^k}+(-1)^{p-1}\frac{H_n}{k^p}$$

Hence we have

$$\int^1_0 x^{n-1}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^k}+(-1)^{p-1}\frac{H_n}{n^p}$$

Setting $n=1$ we get our integral $$\int^1_0 \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}{\zeta(p-k+1)}+(-1)^{p-1}$$

The sum can be converted to

$$\int^1_0 \mathrm{Li}_p(x)\,dx=\sum_{k=2}^{p}(-1)^{k+p}{\zeta(k)}+(-1)^{p-1}$$
 
We proved that

$$\int^1_0 x^{n}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{(n+1)^k}+(-1)^{p-1}\frac{H_n}{(n+1)^p}$$

Now divide by $n^q$$$\int^1_0 \frac{x^n}{n^q}\, \mathrm{Li}_p(x)\,dx=\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^q(n+1)^k}+(-1)^{p-1}\frac{H_n}{n^q(n+1)^p}$$

Sum with respect to $n$

$$\int^1_0 \mathrm{Li}_q(x) \mathrm{Li}_p(x)\,dx= \sum_{n=1}^\infty\sum_{k=1}^{p-1}(-1)^{k-1}\frac{\zeta(p-k+1)}{n^q(n+1)^k}+(-1)^{p-1}\sum_{n=1}^\infty\frac{H_n}{n^q(n+1)^p}$$

Next we look at the sum

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k}$$
 
Now we look at the series

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k}$$

First notice that

$$\int^1_0 x^n \,dx= \frac{1}{n+1} $$

By induction we get

$$\frac{(-1)^{k-1}}{(k-1)!}\int^1_0 x^n \log^{k-1}(x)\,dx= \frac{1}{(n+1)^k} $$

Hence we get the series

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \frac{(-1)^{k-1}}{(k-1)!}\int^1_0\sum_{n=1}^\infty\frac{1}{n^q} x^n \log^{k-1}(x)\,dx $$

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \frac{(-1)^{k-1}}{(k-1)!}\int^1_0\mathrm{Li}_q(x) \log^{k-1}(x)\,dx $$

Now let us look at the following

$$\sum_{n=1}H_n^{(q)} x^n = \frac{\mathrm{Li}_q(x)}{1-x}$$

Or we have

$$\sum_{n=1}H_n^{(q)} (1-x)x^n =\mathrm{Li}_q(x)$$

$$\sum_{n=1}H_n^{(q)} \int^1_0 x^n(1-x)\log^{k-1}(x)\,dx =\int^1_0\mathrm{Li}_q(x)\log^{k-1}(x) \,dx$$

Eventually we get that

$$\frac{(-1)^{k-1}}{(k-1)!}\int^1_0 x^n(1-x)\log^{k-1}(x)\,dx = \frac{1}{(n+1)^k}-\frac{1}{(n+2)^k} $$

Finally we get

$$\sum_{n=1}^\infty\frac{1}{n^q(n+1)^k} = \sum_{n=1}^\infty\frac{H_n^{(q)}}{(n+1)^k}-\frac{H_n^{(q)}}{(n+2)^k} $$
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
7K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
14K
  • · Replies 14 ·
Replies
14
Views
19K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
15K
  • · Replies 12 ·
Replies
12
Views
3K