What is the range and domain of a logarithm function?

  • Thread starter Thread starter Byrgg
  • Start date Start date
  • Tags Tags
    Logarithms
Click For Summary

Homework Help Overview

The discussion revolves around the properties of logarithmic functions, specifically the range of the function y = b^n and its implications for the domain of log(b)n. Participants are exploring whether log(b)n can take on negative values or zero, and the conditions under which these properties hold.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to clarify the relationship between the range of exponential functions and the domain of logarithmic functions. Questions about the behavior of log(b)n for different values of b and n are raised, including whether negative or zero inputs are permissible.

Discussion Status

The discussion is active, with various participants offering insights and questioning assumptions about the properties of logarithms and exponentials. Some guidance has been provided regarding the nature of inverse functions, but no consensus has been reached on all points raised.

Contextual Notes

There are indications of confusion regarding the definitions and properties of logarithmic functions, particularly concerning the values that b can take and the implications for the range and domain of the functions involved. Participants are encouraged to refer back to their textbooks for clarification.

  • #31
Byrgg said:
Actually there's still something I'm not getting, on another forum someone is saying that when you consider that log_b (x) and b ^ x are inverses, there should be an immediate realization of the problem, anyone able to help me understand this exactly?

The definition of inverse functions has been posted several times already but I will do it again.

If two functions f(x) and g(x) are inverses of each other then

f(g(x)) = g(f(x)) = x

Do you understand this?

Thus since logb(x) and bx are inverse functions if we let f(x) = bx and g(x) = logb(x)

Then f(g(x)) = blogb(x)

And since we said that these functions are inverses then f(g(x)) = x which means that blogb(x) = x.
 
Physics news on Phys.org
  • #32
"Thus since log_b(x) and b ^ x are inverse functions if we let f(x) = b ^ x and g(x) = log_b(x)

Then f(g(x)) = b ^ log_b(x)"

How did you get from the first line to the second in this? I'm sorry, I'm just not seeing how you did it.

I know that f(g(x)) = g(f(x)) = x, but I got confused when you did the above...
 
  • #33
Byrgg said:
"Thus since log_b(x) and b ^ x are inverse functions if we let f(x) = b ^ x and g(x) = log_b(x)

Then f(g(x)) = b ^ log_b(x)"

How did you get from the first line to the second in this? I'm sorry, I'm just not seeing how you did it.

I know that f(g(x)) = g(f(x)) = x, but I got confused when you did the above...


The log function is DEFINED as the inverse of the exponential function.

If we have a function y=f(x)

then there is a function x = g(y), such that the function y=g(x) is the inverse of f

Now let's look at this in terms of the exponential and logarithmic functions.

we have y= bx
Now we want to define a function x = g(y) that will be the inverse of this function, and we define this function to be the logarithm so that if

y = bx
then
x = logb(y) these two equations are the exact same thing, and so y = logb(x) is the inverse of y = bx.

Again letting f(x) = bx
and g(x) = logb(x)

so when I take f(g(x)) all that I am doing is taking the original x in f(x) and putting g(x) there instead

f(x) = bx
f(g(x)) = bg(x)
f(g(x)) = blogb(x) = x

Is this helping at all?
 
  • #34
Ok, I think I've got it now:

let f(x) = b ^ x and g(x) = log_b(x)

f(x) = b ^ x

and x = f(g(x))



therefore subbing all the x's with g(x) brings the folllowing about:

f(g(x)) = b ^ g(x) = x
but g(x) = log_b(x)
therefore f(g(x)) = b ^ log_b(x) = x

Yes I think I finally got it all, did that look right? It's basically just what you did(I'm pretty sure) but I sort of put it into my own words.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K