MHB What is the Simplified Form of the Trigonometric Expression?

AI Thread Summary
The discussion focuses on evaluating the expression $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$, with the solution arriving at the value of 12. The approach involves using trigonometric identities and the concept of spread polynomials, particularly for angles that are multiples of each other. A key insight is that $\sin \left(\frac{\pi}{10}\right)$ relates to the Golden Ratio, specifically $\sin \left(\frac{\pi}{10}\right)=\frac{\phi}{2}$. The final derivation shows that $s=\frac{1}{8} \left(3+\sqrt{5}\right)$, confirming the solution. The discussion highlights the utility of spread polynomials in solving such trigonometric problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$.
 
Mathematics news on Phys.org
I would use degrees to solve

we shall use the identity below to solve it

We have

$sin\, 72^0$
$= 2 \cos\, 36^0 \sin\, 36^0$ using sin 2A formula
$= 2 \cos\, 36^0 ( 2\, sin \,18^0cos\ 18^0) $using sin 2A formula again
$= 4\ cos\, 36^0 sin \,18 ^0 sin \,72^0$ as cos18 = sin(90-18) = sin 72
or
$4 \cos \,36^0 sin \,18^0= 1$
or
$\sin\, 54^0 sin\ 18^0 = \frac{1}{4}$
This is in my math blog at Fun with maths: Q13/092) Prove 4 cos 36 sin 18 = 1

another identity
$\cos^2 18^0 - cos^2 36^0 = (\cos \,18^0+ \cos \,36^0)*(\cos\, 18^0 - \cos \,36^0) $
$= \cos\, 9^0 * cos\, 27^0 * 2 *\ sin\, 9^0 * sin \,27 ^0$
$= \sin\, 18^0\ sin \,54^0 = \frac{1}{4}$

hence

$\frac{1}{\sin ^2 18^0} + \frac{1}{\sin ^2 54^0}$
=$\frac{\sin ^2 54^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + 1- \cos ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
$= 16( \cos^2 36^0 +1 - \cos ^2 18^0)$
$= 16 ( 1- \frac{1}{4})= 12$
 
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED
 
RLBrown said:
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED

hello Brown. Thanks for introducing me to spread polynomial

This is completely new to me.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
942
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
935
Back
Top