What is the Simplified Form of the Trigonometric Expression?

Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$, with the established solution being 12. The approach utilizes the identity involving the Golden Ratio, specifically $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$. A "Spread Polynomial" is introduced for simplifying the calculations, where $\theta =\frac{\pi }{10}$ and $s=\sin^2(\theta)$, leading to the equation $\frac{1}{(s (3-4 s))^2}+\frac{1}{s} = 12$. The derived value for $s$ is $\frac{1}{8} \left(3+\sqrt{5}\right)$, confirming the solution.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with the Golden Ratio ($\phi$)
  • Knowledge of Spread Polynomials
  • Basic algebraic manipulation skills
NEXT STEPS
  • Research the properties of the Golden Ratio in trigonometry
  • Learn about Spread Polynomials and their applications
  • Explore advanced trigonometric identities and their proofs
  • Study the derivation of trigonometric values for specific angles
USEFUL FOR

Mathematicians, students studying trigonometry, educators teaching advanced trigonometric concepts, and anyone interested in the applications of the Golden Ratio in mathematics.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$.
 
Mathematics news on Phys.org
I would use degrees to solve

we shall use the identity below to solve it

We have

$sin\, 72^0$
$= 2 \cos\, 36^0 \sin\, 36^0$ using sin 2A formula
$= 2 \cos\, 36^0 ( 2\, sin \,18^0cos\ 18^0) $using sin 2A formula again
$= 4\ cos\, 36^0 sin \,18 ^0 sin \,72^0$ as cos18 = sin(90-18) = sin 72
or
$4 \cos \,36^0 sin \,18^0= 1$
or
$\sin\, 54^0 sin\ 18^0 = \frac{1}{4}$
This is in my math blog at Fun with maths: Q13/092) Prove 4 cos 36 sin 18 = 1

another identity
$\cos^2 18^0 - cos^2 36^0 = (\cos \,18^0+ \cos \,36^0)*(\cos\, 18^0 - \cos \,36^0) $
$= \cos\, 9^0 * cos\, 27^0 * 2 *\ sin\, 9^0 * sin \,27 ^0$
$= \sin\, 18^0\ sin \,54^0 = \frac{1}{4}$

hence

$\frac{1}{\sin ^2 18^0} + \frac{1}{\sin ^2 54^0}$
=$\frac{\sin ^2 54^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + 1- \cos ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
$= 16( \cos^2 36^0 +1 - \cos ^2 18^0)$
$= 16 ( 1- \frac{1}{4})= 12$
 
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED
 
RLBrown said:
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED

hello Brown. Thanks for introducing me to spread polynomial

This is completely new to me.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K