MHB What is the Simplified Form of the Trigonometric Expression?

Click For Summary
The discussion focuses on evaluating the expression $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$, with the solution arriving at the value of 12. The approach involves using trigonometric identities and the concept of spread polynomials, particularly for angles that are multiples of each other. A key insight is that $\sin \left(\frac{\pi}{10}\right)$ relates to the Golden Ratio, specifically $\sin \left(\frac{\pi}{10}\right)=\frac{\phi}{2}$. The final derivation shows that $s=\frac{1}{8} \left(3+\sqrt{5}\right)$, confirming the solution. The discussion highlights the utility of spread polynomials in solving such trigonometric problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{1}{\sin^2 \dfrac{\pi}{10}}+\dfrac{1}{\sin^2 \dfrac{3\pi}{10}}$.
 
Mathematics news on Phys.org
I would use degrees to solve

we shall use the identity below to solve it

We have

$sin\, 72^0$
$= 2 \cos\, 36^0 \sin\, 36^0$ using sin 2A formula
$= 2 \cos\, 36^0 ( 2\, sin \,18^0cos\ 18^0) $using sin 2A formula again
$= 4\ cos\, 36^0 sin \,18 ^0 sin \,72^0$ as cos18 = sin(90-18) = sin 72
or
$4 \cos \,36^0 sin \,18^0= 1$
or
$\sin\, 54^0 sin\ 18^0 = \frac{1}{4}$
This is in my math blog at Fun with maths: Q13/092) Prove 4 cos 36 sin 18 = 1

another identity
$\cos^2 18^0 - cos^2 36^0 = (\cos \,18^0+ \cos \,36^0)*(\cos\, 18^0 - \cos \,36^0) $
$= \cos\, 9^0 * cos\, 27^0 * 2 *\ sin\, 9^0 * sin \,27 ^0$
$= \sin\, 18^0\ sin \,54^0 = \frac{1}{4}$

hence

$\frac{1}{\sin ^2 18^0} + \frac{1}{\sin ^2 54^0}$
=$\frac{\sin ^2 54^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + \sin ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
=$\frac{\cos ^2 36^0 + 1- \cos ^2 18^0}{\sin ^2 18^0\sin ^2 54^0}$
$= 16( \cos^2 36^0 +1 - \cos ^2 18^0)$
$= 16 ( 1- \frac{1}{4})= 12$
 
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED
 
RLBrown said:
Here is a "working backward" approach.
kaliprasad's solution is 12 which can be checked (approximately) with a calculator.

To verify that 12 is the solution, I'll try to derive a fact about one of my favorite angles $\theta =\frac{\pi }{10}$ , and the Golden Ratio. That is: $\sin \left(\frac{\pi }{10}\right)=\frac{\phi }{2}$

When solving problems where one angle is a (natural number) multiple another, it is useful to use a "Spread Polynomial". Click Here, for a table of spread polynomials. Let: $\theta =\frac{\pi }{10}$ and $s=\sin ^2(\theta )$

Then $\sin ^2(3 \theta )$= S3(s)
Where: S3(s) = $s(3-4s)^2$

Then the problem can be re-written as...

Given: $\frac{1}{(s (3-4 s))^2}+\frac{1}{s}$ = 12
Prove: $\sqrt{s}=\frac{\phi }{2}$

Solving for s: Click Here
$s=\frac{1}{8} \left(3+\sqrt{5}\right)$

Solving for $\sqrt{s}$:
$\sqrt{s}=\frac{\phi }{2}$ QED

hello Brown. Thanks for introducing me to spread polynomial

This is completely new to me.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K