MHB What is the smallest possible value of y for given x and y?

AI Thread Summary
The discussion revolves around finding the smallest positive integer value of y for given positive integers x and y, constrained by the inequalities 7/10 < x/y < 11/15. Participants acknowledge that while brute-force methods were used, they still led to correct solutions. There is a consensus that any solution yielding the correct answer can be considered valid, regardless of its elegance. The conversation emphasizes the importance of finding efficient methods for solving the problem. Ultimately, the focus remains on determining the minimum value of y under the specified conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y$ be positive integers such that $\dfrac{7}{10}<\dfrac{x}{y}<\dfrac{11}{15}$. Find the smallest possible value of $y$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y$ be positive integers such that $\dfrac{7}{10}<\dfrac{x}{y}<\dfrac{11}{15}$. Find the smallest possible value of $y$.
$\dfrac{7}{10}<\dfrac{x}{y}<\dfrac{11}{15}$

Multiplying throughout by $30y$, we get

$21y<30x<22y$

So we have to find a multiple of 30 lying between multiples of 21 and 22.

Multiples of 30 are 30, 60, 90, 120, 150, 180, 210, ...

Writing down multiples of 21 and 22,

21 22 y=1
42 44 y=2
63 66 y=3
84 88 y=4
105 110 y=5
126 132 y=6
147 154 y=7

Aha...150 lies between 147 and 154 for y=7.
So, the smallest possible value of y is 7.

(Sorry that my solution is not elegant.)
 
Last edited:
Thanks for participating, Alexmahone! Your answer is correct!

Alexmahone said:
...

(Sorry that my proof is not elegant.)

I think as long as a solution led to the correct solution, it can be deemed as an elegant solution, no? :o
 
anemone said:
Thanks for participating, Alexmahone! Your answer is correct!
I think as long as a solution led to the correct solution, it can be deemed as an elegant solution, no? :o

You're welcome!

But my solution is just brute-force. I hope you or someone else has a better solution.
 
Solution from other:
Suppose $y \le 6$. Then $y$ is a divisor of 60 and hence $\dfrac{x}{y}=\dfrac{a}{60}$, where $a$ is a composite number.

But notice that $\dfrac{7}{10}=\dfrac{42}{60}$ and $\dfrac{11}{15}=\dfrac{44}{60}$, this tells us $a=43$, which leads to a contradiction.

Hence, the smallest possible value of $y$ is 7.
 
anemone said:
Let $x,\,y$ be positive integers such that $\dfrac{7}{10}<\dfrac{x}{y}<\dfrac{11}{15}$. Find the smallest possible value of $y$.
$\dfrac {21y}{30y}<\dfrac {30x}{30y} <\dfrac {22y}{30y}$
$21y<30x ----(1)$
$30x<22y----(2)$
now we must find the smallest values of $x,y$ satisfying both (1) and (2)
and we get :$x=5,y=7$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top