MHB What is the Solution to $4\sin(x)+3\cos(x)\geq0$ in Terms of Domain and Range?

AI Thread Summary
To solve the inequality $4\sin(x)+3\cos(x)\geq0$, start by rewriting it as $5\left(\frac{4}{5}\sin(x)+\frac{3}{5}\cos(x)\right)\geq0$. This leads to the equivalent expression $5\sin(x+\theta)\geq0$, where $\theta=\arctan(3/4)$. The solution occurs when $\sin(x)\geq0$, which is true for intervals $x\in[2k\pi-\theta,(2k+1)\pi-\theta]$ for integer $k$. It is crucial to analyze the sign of $\cos(x)$ before dividing to maintain the inequality's direction. Graphing the functions can help verify the solution.
bahadeen
Messages
2
Reaction score
0

Attachments

  • aaa.gif
    aaa.gif
    13.1 KB · Views: 110
Mathematics news on Phys.org
You're certainly fine up to and including the $4 \sin(x)\ge -3 \cos(x)$ step. And you'd even be quite justified in doing
$$\sin(x)\ge -\frac34 \, \cos(x).$$
The problem is when you divide through by $\cos(x)$. You cannot, in general, keep the inequality the same direction because $\cos(x)$ is not always positive. Whenever it's negative, you should technically reverse the inequality.

However, since you don't know in advance when to do that, I suggest a different approach: find out where $x=\arctan(-3/4)$. That is, find ALL solutions of this equation. Then divide up the real line into pieces depending on where you get the equalities. Finally, sample the expression $4\sin(x)+3 \cos(x)$ inside each of those pieces - find out where it's positive and where it's negative. The positive portions are in the domain, and the negative are not.

Does that make sense?
 
You want to solve $4\sin(x)+3\cos(x)\geq0$. This is the same as $5({4\over5}\sin(x)+{3\over 5}\cos(x))\geq0$. Now there is $\theta$ with $\cos(\theta)={4\over 5}$ and $\sin(\theta)={3\over5}$. Namely $\theta=\arctan(3/4)$. So the original inequality is the same as $5\sin(x+\theta)\geq0$. Now $\sin(x)\geq0$ precisely when $x\in[2k\pi,(2k+1)\pi]$ for an integer $k$. So your inequality is true for $x\in[2k\pi-\theta,(2k+1)\pi-\theta]$.

You might want to use your favorite graphing software to graph the functions to check the above.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top