What is the solution to a problem involving integers on an icosahedron?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The problem involves assigning nonnegative integers to the faces of a regular icosahedron, totaling 39 across all 20 faces. Given the structure of the icosahedron, which has 12 vertices, the challenge is to demonstrate that at least two adjacent faces share the same integer. The solution hinges on the Pigeonhole Principle, as there are more faces than unique integers that can be assigned under the given sum constraint. The correct answer was provided by a participant named kiwi. This problem highlights interesting properties of geometric shapes and integer assignments.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

In honor of Opalg's http://mathhelpboards.com/geometry-11/ask-height-icosahedron-18151.html, here is another problem involving icosahedrons:

On each face of a regular icosahedron is written a nonnegative integer such that the sum of all $20$ integers is $39$. Show that there are two faces that share a vertex and have the same integer written on them. (Recall that an icosahedron has $12$ vertices.)

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to kiwi for his correct answer, which follows:

Assume that no two faces with a common vertex have the same number written on them.

Consider any vertex. If we sum the integers on the 5 faces that involve this vertex the sum must be at least 0+1+2+3+4=10.

Doing this for all 12 vertices and summing (recognizing that every face will be counted more than once) we get a total of 120.

Now each face is triangular so it's integer was included for each of three vertices. Since no two faces with a common vertex have the same number written on them the total must be at least 120/3 = 40.

We are told that the total is 39 so we have a contradiction so two faces with a common vertex must have the same number on them.
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K