MHB What is the solution to this equation in positive integers?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
The equation $577(bcd+b+c)=520(abcd+ab+ac+cd+1)$ is being discussed for solutions in positive integers. Participants confirm that a solution provided by one user is correct and aligns with another's findings. The conversation includes holiday greetings, indicating a friendly atmosphere among participants. The focus remains on solving the mathematical problem, with acknowledgment of correct answers. The discussion highlights collaboration and validation of solutions in the context of integer equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve in positive integers for

$577(bcd+b+c)=520(abcd+ab+ac+cd+1)$
 
Mathematics news on Phys.org
anemone said:
Solve in positive integers for

$577(bcd+b+c)=520(abcd+ab+ac+cd+1)$

Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b<10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.
 
mente oscura said:
Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b<10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.

57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9
 
kaliprasad said:
57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9

57c=7(cd+1)

c(57-7d)=7 \ \rightarrow{d=8} \ \rightarrow{c=7}

Regards.
 
mente oscura said:
Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b&lt;10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.

mente oscura said:
57c=7(cd+1)

c(57-7d)=7 \ \rightarrow{d=8} \ \rightarrow{c=7}

Regards.

Bravo, mente oscura! Your answer is correct and your solution is pretty much the same as the one that I have and you're simply awesome!

Merry Christmas to you too!

kaliprasad said:
57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9

Yes, that's correct, kaliprasad and thanks for participating!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K