What is the solution to this equation in positive integers?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers Positive
Click For Summary
SUMMARY

The equation $577(bcd+b+c)=520(abcd+ab+ac+cd+1)$ is solved in positive integers, with participants confirming the correctness of solutions provided. The discussion highlights the collaborative nature of problem-solving in mathematics, with specific acknowledgment of contributions from users like "mente oscura" and "kaliprasad." The interaction emphasizes the importance of community engagement in tackling complex equations.

PREREQUISITES
  • Understanding of algebraic equations and integer solutions
  • Familiarity with positive integer constraints in mathematical problems
  • Basic knowledge of mathematical notation and terminology
  • Experience in collaborative problem-solving environments
NEXT STEPS
  • Explore methods for solving Diophantine equations
  • Research integer programming techniques for optimization
  • Learn about collaborative platforms for mathematical discussions
  • Investigate advanced algebraic concepts related to polynomial equations
USEFUL FOR

Mathematicians, educators, students, and anyone interested in solving complex algebraic equations and engaging in collaborative mathematical discussions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve in positive integers for

$577(bcd+b+c)=520(abcd+ab+ac+cd+1)$
 
Mathematics news on Phys.org
anemone said:
Solve in positive integers for

$577(bcd+b+c)=520(abcd+ab+ac+cd+1)$

Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b<10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.
 
mente oscura said:
Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b<10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.

57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9
 
kaliprasad said:
57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9

57c=7(cd+1)

c(57-7d)=7 \ \rightarrow{d=8} \ \rightarrow{c=7}

Regards.
 
mente oscura said:
Hello. (Sun)

Merry christmas. (Party)

577(bcd+b+c)=520a(bcd+b+c)+520(cd+1)

(577-520a)(bcd+b+c)=+520(cd+1)

First conclusion: \ a=1

57(bcd+b+c)=+520(cd+1)

57b(cd+1)+57c=+520(cd+1)

57c=(520-57b)(cd+1) \ \rightarrow{b&lt;10}

57 \ and \ 520 \ coprime

57|(cd+1)

A bit of brute force. :o

a=1
b=9
c=7
d=8

Regards.

mente oscura said:
57c=7(cd+1)

c(57-7d)=7 \ \rightarrow{d=8} \ \rightarrow{c=7}

Regards.

Bravo, mente oscura! Your answer is correct and your solution is pretty much the same as the one that I have and you're simply awesome!

Merry Christmas to you too!

kaliprasad said:
57c=(520−57b)(cd+1)
=> 520 - 57b < 57
or b >= 9

so b = 9

Yes, that's correct, kaliprasad and thanks for participating!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K