MHB What is the solution to this trigonometric challenge?

Click For Summary
The challenge involves evaluating the expression $\dfrac{\sin^2 \dfrac{\pi}{7}}{\sin^4 \dfrac{2\pi}{7}}+\dfrac{\sin^2 \dfrac{2\pi}{7}}{\sin^4 \dfrac{3\pi}{7}}+\dfrac{\sin^2 \dfrac{3\pi}{7}}{\sin^4 \dfrac{\pi}{7}}$ analytically. Participants discuss various trigonometric identities and properties of sine functions to simplify the expression. The use of symmetry in sine values and relationships between angles is emphasized to facilitate calculations. Some suggest leveraging known values or derived formulas for sine at specific angles. Ultimately, the goal is to arrive at a simplified numerical result without computational tools.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{\sin^2 \dfrac{\pi}{7}}{\sin^4 \dfrac{2\pi}{7}}+\dfrac{\sin^2 \dfrac{2\pi}{7}}{\sin^4 \dfrac{3\pi}{7}}+\dfrac{\sin^2 \dfrac{3\pi}{7}}{\sin^4 \dfrac{\pi}{7}}$ without the help of a calculator.
 
Mathematics news on Phys.org
Let $s_k=\sin \dfrac{k\pi}{7}$ and $c_k=\cos \dfrac{k\pi}{7}$.

We have

$\dfrac{\sin^2 x}{\sin^4 x}=\dfrac{1}{16\sin^2 x \cos^4 x}=\dfrac{1}{16\sin^2 x \cos^2 x}+\dfrac{1}{16\cos^4 x}=\dfrac{1}{16\sin^2 x}+\dfrac{1}{16\cos^2 x}+\dfrac{1}{16\cos^4 x}$

Therefore we want to find $\displaystyle \sum_{k=1}^3 \dfrac{s_k^2}{s_{2k}^4}=\sum_{k=1}^3 \dfrac{1}{16s_k^2}+\sum_{k=1}^3 \dfrac{1}{16c_k^2}+\sum_{k=1}^3 \dfrac{1}{16c_k^4}$

$\sin 7x=\sin x(64\sin^6 x-112\sin^4 x+56\sin^2 x-7)$

Let the polynomial $64x^6-112x^4+56x^2-7$ has roots $\pm s_1,\,\pm s_2,\,\pm s_3$ so that the polynomial $P_1(x)=64x^3-112x^2+56x-7$ has roots $s_1^2,\,s_2^2,\,s_3^2$ and the polynomial $Q_1(x)=7x^3-56x^2+112x-64$ has roots $s_1^{-2},\,s_2^{-2},\,s_3^{-2}$.

$\displaystyle \sum_{k=1}^3 \dfrac{1}{s_k^2}=s_1^{-2}+s_2^{-2}+s_3^{-2}=\dfrac{56}{7}=8$

And

$P_2(x)=-P_1(1-x)=64x^3-80x^2+24x-1$ has roots $c_1^2,\,c_2^2,\,c_3^2$ and the polynomial $Q_2(x)=x^3-24x^2+80x-64$ has roots $c_1^{-2},\,c_2^{-2},\,c_3^{-2}$.

$\displaystyle \sum_{k=1}^3 \dfrac{1}{c_k^2}=c_1^{-2}+c_2^{-2}+c_3^{-2}=24$

$\displaystyle \sum_{k=1}^3 \dfrac{1}{c_k^4}=c_1^{-4}+c_2^{-4}+c_3^{-4}=24^2-2\times 80=416$

$\therefore \displaystyle \sum_{k=1}^3 \dfrac{s_k^2}{s_{2k}^4}=\dfrac{8}{16}+ \dfrac{24}{16}+\dfrac{416}{16}=28.$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
999
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K