MHB What is the Sum of Roots for $P(x)=x^3-2x^2-x+1$ with $x_1>x_2>x_3$?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x_1,\,x_2,\,x_3$ be the three real roots of $P(x)=x^3-2x^2-x+1$ such that $x_1>x_2>x_3$.

Evaluate $x_1^2x_2+x_2^2x_3+x_3^2x_1$.
 
Mathematics news on Phys.org
Subtle hint:

Make full use of the expressions $x_1^2x_2+x_2^2x_3+x_3^2x_1$ and $x_1x_2^2+x_2x_3^2+x_3x_1^2$.
 
anemone said:
Subtle hint:

Make full use of the expressions $x_1^2x_2+x_2^2x_3+x_3^2x_1$ and $x_1x_2^2+x_2x_3^2+x_3x_1^2$.

Follow-up hint:

Relate $x_1^2x_2+x_2^2x_3+x_3^2x_1$ and $x_1x_2^2+x_2x_3^2+x_3x_1^2$ with

1. $x_1+x_2+x_3$,

2. $x_1x_2+x_2x_3+x_3x_1$,

3. $x_1x_2x_3$.
 
anemone said:
Follow-up hint:

Relate $x_1^2x_2+x_2^2x_3+x_3^2x_1$ and $x_1x_2^2+x_2x_3^2+x_3x_1^2$ with

1. $x_1+x_2+x_3$,

2. $x_1x_2+x_2x_3+x_3x_1$,

3. $x_1x_2x_3$.

I've managed to get as far as

$x_1^2x_2+x_2^2x_3+x_3^2x_1+x_1x_2^2+x_2x_3^2+x_3x_1^2=1$

Currently, I don't see a way of progressing any further.
 
Let $S_1=x_1^2x_2+x_2^2x_3+x_3^2x_1$
and $S_2 = x_1x_2^2 + x_2x_3^2 + x_3x_1^2$
(slight cheat here used a computer)
We have $P(-.9)=-.449,P(-.8)=.008,P(.5)= .125,P(.6)=-.104, P(2.2)=-.232, P(2.3) = .287$
It follows that the roots satisfy $-.9<x_3<-.8, .5<x_2<.6$ and $2.2<x_1<2.3$
This implies that $x_1^2x_2 + x_2^2x_3+ x_3^2x_1 > 0$
or $S_1 > 0$
Now $S_1 + S_2 = (x_1^2x_2+x_2^2x_3+x_3^2x_1) + (x_1x_2^2 + x_2x_3^2 + x_3x_1^2)$
$= x_1x_2(x_1+x_2) + x_2x_3(x_3+x_2)+ x_3x_1(x_3+x_1)$
$= (x_2+x_3+x_1)(x_1x_2+x_2x_3+ x_3x_1) - 3 x_1x_2x_3$
$= 2 * (-1) + 3 = 1$
The product $S_1S_2$ is
$S_1S_2 = (x_1^2x_2 + x_2^2x_3 + x_3^2x_1^2)(x_1x_2^2 + x_2x_3^2 + x_3x_1^2)$
= $x_1^3x_2^3 + x_2^3x_3^3 + x_3^3x_1^3 + 3x_1^2x_2^2 x_3^2 + x_1x_2x_3(x_1^3 + x_2^3 + x_3^3)$
Now we need to evaluate $x_1^3x_2^3 + x_2^3x_3^3 + x_3^3x_1^3$ and so on
To evaluate that, notice that the equation with roots $x_1^3,x_2^3,x_3^3$ by
letting $y = x^3 $in the original equation, which then becomes $y+1=2(\sqrt[3]y)^2 + \sqrt[3]y$
Cube both sides to get
$y^3+3y^2+ 3y + 1 = 8y^2 + y + 6y(y+1)$
or $y^3-11y^2-4y+1=0$
Therefore $x_1^3+x_2^3+x_3^3=11$ , $x_1^3x_2^3+x_2^3x_3^3 + x_3^3x_1^3 = -4$
Substitute those values into the above displayed equation to get
$S_1S_2=-4+3-11=-12$
Thus the equation with roots $S_1$ and $S_2$ are
$x^2 -x - 12 = 0$ or $(x-4)(x+3) = 0$ so x = 4 or -3
as $S_1 > 0$ so it is 4
or $x_1^2x_2 + x_2^2x_3+ x_3^2x_1 = 4$
 
prove of $S_1>0$ without using a computer
$P(-1)=-1<0, P(0)=1>0, P(1)=-1<0,P(3)=7>0$
from Descartes' rule of signs
P(X) has two positive roots and one negative root

$\therefore x_1>1>x_2>0>x_3$
it is clear that:$x_1^2x_2>0,x_2^2x_3<0,$ and $x_3^2x_1>0$
this implies $S_1=x_1^2x_2+x_2^2x_3+x_3^2x_1>0$
for $x_1^2x_2>\left | x_2^2x_3 \right |$
 
Last edited:
Hi all!

I've been very busy in the past few days and I am sick today...so sorry all for the late reply!

Thanks kaliprasad for your neat and elegant solution and thanks to greg1313 and Albert as well for your participation!

Yes, greg1313, if we let $S_1=x_1^2x_2+x_2^2x_3+x_3^2x_1$ and $S_2=x_1x_2^2+x_2x_3^2+x_3x_1^2$, then $S_1+S_2=1$, but note that we could also draw some useful information if we subtract $S_2$ from $S_1$ as $S_1-S_2=(x_1-x_2)(x_2-x_3)(x_1-x_3)>0\implies S_1>S_2$ and we then see if we can write the product of $S_1$ and $S_2$ using only the expressions below:

1. $x_1+x_2+x_3$,

2. $x_1x_2+x_2x_3+x_3x_1$,

3. $x_1x_2x_3$.

$\begin{align*}S_1S_2&=(x_1^2x_2 + x_2^2x_3 + x_3^2x_1^2)(x_1x_2^2 + x_2x_3^2 + x_3x_1^2)\\&=x_1^3x_2^3 + x_2^3x_3^3 + x_3^3x_1^3 + 3x_1^2x_2^2 x_3^2 + x_1x_2x_3(x_1^3 + x_2^3 + x_3^3)\\&=(x_1x_2+x_2x_3+x_3x_1)^3+(x_1+x_2+x_3)^3(x_1x_2x_3)+9(x_1x_2x_3)^2-6(x_1+x_2+x_3)(x_1x_2+x_2x_3+x_3x_1)(x_1x_2x_3)\\&=-12\end{align*}$

Therefore, we get $S_1=4,\,S_2=-3$ and we're hence done! :D
 
anemone said:
Hi all!

I've been very busy in the past few days and I am sick today...so sorry all for the late reply!

wish you a speedy recovery
 
kaliprasad said:
wish you a speedy recovery

Thank you, Kali!
 
Back
Top