What is the Trigonometric Inequality for $0<x<\dfrac{\pi}{2}$?

Click For Summary
SUMMARY

The trigonometric inequality for the interval \(0 < x < \frac{\pi}{2}\) is established as follows: \(\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) \ge 5\left[1+x^4\left(\frac{\pi}{2}-x\right)^4\right]\). This inequality holds true for all values of \(x\) within the specified range. The proof involves analyzing the behavior of the sine and cosine functions and their reciprocals, demonstrating that the left-hand side consistently exceeds the right-hand side.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine and cosine.
  • Familiarity with inequalities and their proofs in mathematical analysis.
  • Knowledge of calculus concepts such as limits and continuity.
  • Basic algebraic manipulation skills to handle inequalities.
NEXT STEPS
  • Study the properties of sine and cosine functions in the interval \(0 < x < \frac{\pi}{2}\).
  • Learn about techniques for proving inequalities in mathematical analysis.
  • Explore advanced topics in calculus, such as Taylor series expansions for sine and cosine.
  • Investigate other trigonometric inequalities and their applications in mathematical proofs.
USEFUL FOR

Mathematicians, students studying advanced calculus, and anyone interested in the properties of trigonometric functions and inequalities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $0<x<\dfrac{\pi}{2}$, the following inequality holds:

$\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)\ge 5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$
 
Mathematics news on Phys.org
We shall prove that if $f(x)=\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)$ and $g(x)=5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$, $0<x<\dfrac{\pi}{2}$, then

$\text{min} f(x)>5.8>\text{max} g(x)$

Since $f(x)$ is symmetric about the point $x=\dfrac{\pi}{4}$ in $\left(0,\,\dfrac{\pi}{2}\right)$, we may use the substitution $x=\dfrac{\pi}{4}-t$, where $-\dfrac{\pi}{4}<t<\dfrac{\pi}{4}$, then

$\begin{align*}f(x)&=\left(1+\dfrac{1}{\sin\left(\dfrac{\pi}{4}-t\right)}\right)\left(1+\dfrac{1}{\cos\left(\dfrac{\pi}{4}-t\right)}\right)\\&=\dfrac{\left(\dfrac{1}{\sqrt{2}}(\cos t -\sin t)+1\right)\left(\dfrac{1}{\sqrt{2}}(\cos t +\sin t)+1\right)}{\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t-\sin t)(\sqrt{2}+\cos t+\sin t)}{2\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t)^2-\sin^2 t}{\sin \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{2+2\sqrt{2}\cos t+\cos 2t}{\cos 2t}\\&=1+\dfrac{2(\sqrt{2}\cos t+1)}{2\cos^2 t-1}\\&=1+\dfrac{2}{\sqrt{2}\cos t-1}\end{align*}$

For $f(x)$ to be at a minimum, $\sqrt{2}\cos t-1$ is at a maximum and so $\cos t=1$. This happens for $t=0$, that is, $x=\dfrac{\pi}{4}$. Thus,

$\text{min} f(x)=1+\dfrac{2}{\sqrt{2}-1}=3+2\sqrt{2}>3+2(1.4)=5.8$.

Now, the maximum of $x\left(\dfrac{\pi}{2}-x\right)$ is $\dfrac{\pi^2}{16}$, which is attained at $x=\dfrac{\pi}{4}$, as

$x\left(\dfrac{\pi}{2}-x\right)=\dfrac{\pi^2}{16}-\left(\dfrac{\pi}{4}-x\right)^2$

So

$\text{max} g(x)=5+\left(\dfrac{\pi^2}{16}\right)^4=5+\dfrac{\pi^8}{16^4}$

Since $\pi^2<10$ we see that

$\begin{align*}\text{max} g(x)&<5\left(1+\dfrac{10^4}{16^4}\right)\\&=5\left(1+\dfrac{10^6}{16^4\times 100}\right)\\&=5\left(1+\dfrac{(10^3)^2}{2^{16}\times 100}\right)\\&<5\left(1+\dfrac{(2^{10})^2}{2^{16}\times 100}\right)\\&=5\left(1+\dfrac{2^4}{100}\right)\\&=5(1+0.16)\\&=5.8\end{align*}$

Hence the inequality follows.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K