MHB What is the Trigonometric Inequality for $0<x<\dfrac{\pi}{2}$?

Click For Summary
For the interval \(0 < x < \frac{\pi}{2}\), the inequality \(\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) \ge 5\left[1+x^4\left(\frac{\pi}{2}-x\right)^4\right]\) is established. The left side of the inequality combines terms involving sine and cosine, while the right side incorporates a polynomial expression dependent on \(x\). The discussion emphasizes the need for proving this inequality through trigonometric identities and calculus techniques. Participants explore various approaches to demonstrate the validity of the inequality, focusing on the behavior of the functions involved. Ultimately, the inequality is confirmed to hold true for the specified range of \(x\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $0<x<\dfrac{\pi}{2}$, the following inequality holds:

$\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)\ge 5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$
 
Mathematics news on Phys.org
We shall prove that if $f(x)=\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)$ and $g(x)=5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$, $0<x<\dfrac{\pi}{2}$, then

$\text{min} f(x)>5.8>\text{max} g(x)$

Since $f(x)$ is symmetric about the point $x=\dfrac{\pi}{4}$ in $\left(0,\,\dfrac{\pi}{2}\right)$, we may use the substitution $x=\dfrac{\pi}{4}-t$, where $-\dfrac{\pi}{4}<t<\dfrac{\pi}{4}$, then

$\begin{align*}f(x)&=\left(1+\dfrac{1}{\sin\left(\dfrac{\pi}{4}-t\right)}\right)\left(1+\dfrac{1}{\cos\left(\dfrac{\pi}{4}-t\right)}\right)\\&=\dfrac{\left(\dfrac{1}{\sqrt{2}}(\cos t -\sin t)+1\right)\left(\dfrac{1}{\sqrt{2}}(\cos t +\sin t)+1\right)}{\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t-\sin t)(\sqrt{2}+\cos t+\sin t)}{2\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t)^2-\sin^2 t}{\sin \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{2+2\sqrt{2}\cos t+\cos 2t}{\cos 2t}\\&=1+\dfrac{2(\sqrt{2}\cos t+1)}{2\cos^2 t-1}\\&=1+\dfrac{2}{\sqrt{2}\cos t-1}\end{align*}$

For $f(x)$ to be at a minimum, $\sqrt{2}\cos t-1$ is at a maximum and so $\cos t=1$. This happens for $t=0$, that is, $x=\dfrac{\pi}{4}$. Thus,

$\text{min} f(x)=1+\dfrac{2}{\sqrt{2}-1}=3+2\sqrt{2}>3+2(1.4)=5.8$.

Now, the maximum of $x\left(\dfrac{\pi}{2}-x\right)$ is $\dfrac{\pi^2}{16}$, which is attained at $x=\dfrac{\pi}{4}$, as

$x\left(\dfrac{\pi}{2}-x\right)=\dfrac{\pi^2}{16}-\left(\dfrac{\pi}{4}-x\right)^2$

So

$\text{max} g(x)=5+\left(\dfrac{\pi^2}{16}\right)^4=5+\dfrac{\pi^8}{16^4}$

Since $\pi^2<10$ we see that

$\begin{align*}\text{max} g(x)&<5\left(1+\dfrac{10^4}{16^4}\right)\\&=5\left(1+\dfrac{10^6}{16^4\times 100}\right)\\&=5\left(1+\dfrac{(10^3)^2}{2^{16}\times 100}\right)\\&<5\left(1+\dfrac{(2^{10})^2}{2^{16}\times 100}\right)\\&=5\left(1+\dfrac{2^4}{100}\right)\\&=5(1+0.16)\\&=5.8\end{align*}$

Hence the inequality follows.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
1
Views
1K
Replies
2
Views
978
Replies
2
Views
1K
Replies
7
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
2
Views
1K
Replies
7
Views
2K