MHB What is the Trigonometric Inequality for $0<x<\dfrac{\pi}{2}$?

Click For Summary
For the interval \(0 < x < \frac{\pi}{2}\), the inequality \(\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) \ge 5\left[1+x^4\left(\frac{\pi}{2}-x\right)^4\right]\) is established. The left side of the inequality combines terms involving sine and cosine, while the right side incorporates a polynomial expression dependent on \(x\). The discussion emphasizes the need for proving this inequality through trigonometric identities and calculus techniques. Participants explore various approaches to demonstrate the validity of the inequality, focusing on the behavior of the functions involved. Ultimately, the inequality is confirmed to hold true for the specified range of \(x\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $0<x<\dfrac{\pi}{2}$, the following inequality holds:

$\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)\ge 5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$
 
Mathematics news on Phys.org
We shall prove that if $f(x)=\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)$ and $g(x)=5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$, $0<x<\dfrac{\pi}{2}$, then

$\text{min} f(x)>5.8>\text{max} g(x)$

Since $f(x)$ is symmetric about the point $x=\dfrac{\pi}{4}$ in $\left(0,\,\dfrac{\pi}{2}\right)$, we may use the substitution $x=\dfrac{\pi}{4}-t$, where $-\dfrac{\pi}{4}<t<\dfrac{\pi}{4}$, then

$\begin{align*}f(x)&=\left(1+\dfrac{1}{\sin\left(\dfrac{\pi}{4}-t\right)}\right)\left(1+\dfrac{1}{\cos\left(\dfrac{\pi}{4}-t\right)}\right)\\&=\dfrac{\left(\dfrac{1}{\sqrt{2}}(\cos t -\sin t)+1\right)\left(\dfrac{1}{\sqrt{2}}(\cos t +\sin t)+1\right)}{\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t-\sin t)(\sqrt{2}+\cos t+\sin t)}{2\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t)^2-\sin^2 t}{\sin \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{2+2\sqrt{2}\cos t+\cos 2t}{\cos 2t}\\&=1+\dfrac{2(\sqrt{2}\cos t+1)}{2\cos^2 t-1}\\&=1+\dfrac{2}{\sqrt{2}\cos t-1}\end{align*}$

For $f(x)$ to be at a minimum, $\sqrt{2}\cos t-1$ is at a maximum and so $\cos t=1$. This happens for $t=0$, that is, $x=\dfrac{\pi}{4}$. Thus,

$\text{min} f(x)=1+\dfrac{2}{\sqrt{2}-1}=3+2\sqrt{2}>3+2(1.4)=5.8$.

Now, the maximum of $x\left(\dfrac{\pi}{2}-x\right)$ is $\dfrac{\pi^2}{16}$, which is attained at $x=\dfrac{\pi}{4}$, as

$x\left(\dfrac{\pi}{2}-x\right)=\dfrac{\pi^2}{16}-\left(\dfrac{\pi}{4}-x\right)^2$

So

$\text{max} g(x)=5+\left(\dfrac{\pi^2}{16}\right)^4=5+\dfrac{\pi^8}{16^4}$

Since $\pi^2<10$ we see that

$\begin{align*}\text{max} g(x)&<5\left(1+\dfrac{10^4}{16^4}\right)\\&=5\left(1+\dfrac{10^6}{16^4\times 100}\right)\\&=5\left(1+\dfrac{(10^3)^2}{2^{16}\times 100}\right)\\&<5\left(1+\dfrac{(2^{10})^2}{2^{16}\times 100}\right)\\&=5\left(1+\dfrac{2^4}{100}\right)\\&=5(1+0.16)\\&=5.8\end{align*}$

Hence the inequality follows.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K