MHB What is the Trigonometric Inequality for $0<x<\dfrac{\pi}{2}$?

Click For Summary
For the interval \(0 < x < \frac{\pi}{2}\), the inequality \(\left(1+\frac{1}{\sin x}\right)\left(1+\frac{1}{\cos x}\right) \ge 5\left[1+x^4\left(\frac{\pi}{2}-x\right)^4\right]\) is established. The left side of the inequality combines terms involving sine and cosine, while the right side incorporates a polynomial expression dependent on \(x\). The discussion emphasizes the need for proving this inequality through trigonometric identities and calculus techniques. Participants explore various approaches to demonstrate the validity of the inequality, focusing on the behavior of the functions involved. Ultimately, the inequality is confirmed to hold true for the specified range of \(x\).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all $0<x<\dfrac{\pi}{2}$, the following inequality holds:

$\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)\ge 5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$
 
Mathematics news on Phys.org
We shall prove that if $f(x)=\left(1+\dfrac{1}{\sin x}\right)\left(1+\dfrac{1}{\cos x}\right)$ and $g(x)=5\left[1+x^4\left(\dfrac{\pi}{2}-x\right)^4\right]$, $0<x<\dfrac{\pi}{2}$, then

$\text{min} f(x)>5.8>\text{max} g(x)$

Since $f(x)$ is symmetric about the point $x=\dfrac{\pi}{4}$ in $\left(0,\,\dfrac{\pi}{2}\right)$, we may use the substitution $x=\dfrac{\pi}{4}-t$, where $-\dfrac{\pi}{4}<t<\dfrac{\pi}{4}$, then

$\begin{align*}f(x)&=\left(1+\dfrac{1}{\sin\left(\dfrac{\pi}{4}-t\right)}\right)\left(1+\dfrac{1}{\cos\left(\dfrac{\pi}{4}-t\right)}\right)\\&=\dfrac{\left(\dfrac{1}{\sqrt{2}}(\cos t -\sin t)+1\right)\left(\dfrac{1}{\sqrt{2}}(\cos t +\sin t)+1\right)}{\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t-\sin t)(\sqrt{2}+\cos t+\sin t)}{2\sin \left(\dfrac{\pi}{4}-t\right)\cos \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{(\sqrt{2}+\cos t)^2-\sin^2 t}{\sin \left(\dfrac{\pi}{4}-t\right)}\\&=\dfrac{2+2\sqrt{2}\cos t+\cos 2t}{\cos 2t}\\&=1+\dfrac{2(\sqrt{2}\cos t+1)}{2\cos^2 t-1}\\&=1+\dfrac{2}{\sqrt{2}\cos t-1}\end{align*}$

For $f(x)$ to be at a minimum, $\sqrt{2}\cos t-1$ is at a maximum and so $\cos t=1$. This happens for $t=0$, that is, $x=\dfrac{\pi}{4}$. Thus,

$\text{min} f(x)=1+\dfrac{2}{\sqrt{2}-1}=3+2\sqrt{2}>3+2(1.4)=5.8$.

Now, the maximum of $x\left(\dfrac{\pi}{2}-x\right)$ is $\dfrac{\pi^2}{16}$, which is attained at $x=\dfrac{\pi}{4}$, as

$x\left(\dfrac{\pi}{2}-x\right)=\dfrac{\pi^2}{16}-\left(\dfrac{\pi}{4}-x\right)^2$

So

$\text{max} g(x)=5+\left(\dfrac{\pi^2}{16}\right)^4=5+\dfrac{\pi^8}{16^4}$

Since $\pi^2<10$ we see that

$\begin{align*}\text{max} g(x)&<5\left(1+\dfrac{10^4}{16^4}\right)\\&=5\left(1+\dfrac{10^6}{16^4\times 100}\right)\\&=5\left(1+\dfrac{(10^3)^2}{2^{16}\times 100}\right)\\&<5\left(1+\dfrac{(2^{10})^2}{2^{16}\times 100}\right)\\&=5\left(1+\dfrac{2^4}{100}\right)\\&=5(1+0.16)\\&=5.8\end{align*}$

Hence the inequality follows.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
997
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K