High School What Is the Value of $2^Y$ for Y in Problem of the Week #128?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around calculating the value of $2^Y$, where $Y$ is defined as $\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)$. Participants share their solutions, with several members successfully computing $2^Y$. MarkFL and mente oscura provide detailed solutions, while others, like soroban, only calculate $Y$. The thread highlights the collaborative effort in solving the mathematical problem. Ultimately, the focus is on deriving the final value of $2^Y$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $Y=\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)$.

Compute $2^Y$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. MarkFL
2. laura123
3. lfdahl
4. mente oscura
5. kaliprasad

Honorable mention goes also to soroban as he computed only the value of $Y$ but not $2^Y$.

Solution from MarkFL:
Let us first consider:

$$\left(\log_2\left(2^n\cdot3\right)\right)^3=\left(n+\log_2(3)\right)^3=n^3+3n^2\log_2(3)+3n\log_2^2(3)+\log_2^3(3)$$

And so we find:

$$\left(\log_2(3)\right)^3-\left(\log_2(6)\right)^3-\left(\log_2(12)\right)^3+\left(\log_2(24)\right)^3=$$

$$\log_2^3(3)-\left(1+3\log_2(3)+3\log_2^2(3)+\log_2^3(3)\right)-\left(8+12\log_2(3)+6\log_2^2(3)+\log_2^3(3)\right)+\left(27+27\log_2(3)+9\log_2^2(3)+\log_2^3(3)\right)=$$

$$18+12\log_2(3)=6\left(3+2\log_2(3)\right)$$

Hence:

$$Y=3+2\log_2(3)=\log_2(72)$$

And thus:

$$2^Y=72$$

Solution from mente oscura:
Y=\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)

Let \ a=\log_2 3

Y=\dfrac{1}{6}\left(a^3-(\log_2 2+a)^3-(\log_2 4+a)^3+(\log_2 8+a)^3\right)

Y=\dfrac{1}{6} \ (a^3-1-3a-3a^2-a^3-8-12a-6a^2-a^3+27+27a+9a^2+a^3)

Y=\dfrac{1}{6} \ (18+12a)=3+2a

Y=3+2a=3+2 \log_2 3=\log_2 8+\log_2 9=\log_2 72

Therefore:

2^Y=72
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K