What Is the Value of $2^Y$ for Y in Problem of the Week #128?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The value of $2^Y$ for the given expression $Y=\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)$ can be computed using logarithmic identities and properties of exponents. The correct solutions were provided by members MarkFL, laura123, lfdahl, mente oscura, and kaliprasad, with MarkFL offering a detailed solution. The discussion highlights the importance of understanding logarithmic transformations in solving exponential equations.

PREREQUISITES
  • Understanding of logarithmic functions and properties
  • Familiarity with exponentiation and its rules
  • Knowledge of mathematical notation and expressions
  • Ability to manipulate algebraic expressions involving logarithms
NEXT STEPS
  • Study the properties of logarithms, particularly change of base and power rules
  • Explore advanced topics in logarithmic equations and their applications
  • Practice solving exponential equations with varying bases
  • Review mathematical proofs involving logarithmic identities
USEFUL FOR

Mathematicians, students studying algebra and logarithms, and anyone interested in solving complex exponential problems.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $Y=\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)$.

Compute $2^Y$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. MarkFL
2. laura123
3. lfdahl
4. mente oscura
5. kaliprasad

Honorable mention goes also to soroban as he computed only the value of $Y$ but not $2^Y$.

Solution from MarkFL:
Let us first consider:

$$\left(\log_2\left(2^n\cdot3\right)\right)^3=\left(n+\log_2(3)\right)^3=n^3+3n^2\log_2(3)+3n\log_2^2(3)+\log_2^3(3)$$

And so we find:

$$\left(\log_2(3)\right)^3-\left(\log_2(6)\right)^3-\left(\log_2(12)\right)^3+\left(\log_2(24)\right)^3=$$

$$\log_2^3(3)-\left(1+3\log_2(3)+3\log_2^2(3)+\log_2^3(3)\right)-\left(8+12\log_2(3)+6\log_2^2(3)+\log_2^3(3)\right)+\left(27+27\log_2(3)+9\log_2^2(3)+\log_2^3(3)\right)=$$

$$18+12\log_2(3)=6\left(3+2\log_2(3)\right)$$

Hence:

$$Y=3+2\log_2(3)=\log_2(72)$$

And thus:

$$2^Y=72$$

Solution from mente oscura:
Y=\dfrac{1}{6}\left((\log_2 3)^3-(\log_2 6)^3-(\log_2 12)^3+(\log_2 24)^3\right)

Let \ a=\log_2 3

Y=\dfrac{1}{6}\left(a^3-(\log_2 2+a)^3-(\log_2 4+a)^3+(\log_2 8+a)^3\right)

Y=\dfrac{1}{6} \ (a^3-1-3a-3a^2-a^3-8-12a-6a^2-a^3+27+27a+9a^2+a^3)

Y=\dfrac{1}{6} \ (18+12a)=3+2a

Y=3+2a=3+2 \log_2 3=\log_2 8+\log_2 9=\log_2 72

Therefore:

2^Y=72
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K