MHB What Is the Value of S_n in the Summation Formula?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun Sum
Click For Summary
The discussion centers on calculating the sum S_n, defined as S_n = ∑_{k=1}^{n} (n! / ((k-1)!(n-k)!)). Anemone's solution shows that S_n can be expressed as ∑_{k=1}^{n} k(nCk). By differentiating the binomial expansion (x+1)^n and evaluating at x=1, it is derived that S_n equals n * 2^(n-1). The participants express gratitude for contributions and insights shared in the problem-solving process. Overall, the thread highlights a mathematical approach to summation using combinatorial identities.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Please compute the following sum:

$$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$
 
Mathematics news on Phys.org
Nice problem!:)

My solution:

We're given $$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$.

By multiplying the variable $k$ on top and bottom of the fraction, we get

$$\small S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}=\sum_{k=1}^{n}\frac{k(n!)}{k(k-1)!(n-k)!}=\sum_{k=1}^{n}\frac{k(n!)}{(k)!(n-k)!}=\sum_{k=1}^{n} k {n\choose k}=\sum_{k=0}^{n} k {n\choose k}-0{n\choose k}=\sum_{k=0}^{n} k {n\choose k}$$

Since $${n\choose k}={n\choose n-k}$$

We see that there is another way to rewrite $S_n$, i.e.

$$S_n=\sum_{k=0}^{n} (n-k) {n\choose n-k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose n-k}-\sum_{k=0}^{n} k {n\choose n-k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose k}-\sum_{k=0}^{n} k {n\choose k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose k}-S_n$$

$$\therefore 2S_n=\sum_{k=0}^{n} n {n\choose k}=n\sum_{k=0}^{n} {n\choose k}=n(2^n)$$

THus,

$$\therefore S_n=n(2)^{n-1}$$
 
Last edited:
Good ans by anemone .

Here is mine
anemone has shown that

Sn = ( k = 1 to n) ∑ k(nCk)

We know

(x+1)^n = ( k = 0 to n) ∑ (nCk)x^k

Differentiate both sides wrt x

n(x+1)^(n-1) = ( k = 1 to n) ∑ k (nCk)x^(k-1) knowing that d/dx(x^0) = 0 so it is dropped

put x = 1 on both sides to get

n 2^(n-1) = ( k = 1 to n) ∑ k (nCk) =Sn
 
Thank you anemone and kaliprasad for participating! (Sun)

Here is my solution:

$$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$

$$S_n=\sum_{k=0}^{n-1}\frac{n!}{((k+1)-1)!(n-(k+1))!}=n\sum_{k=0}^{n-1}\frac{(n-1)!}{k!((n-1)-k)!}$$

$$S_n=n\sum_{k=0}^{n-1}{n-1 \choose k}=n(1+1)^{n-1}=n2^{n-1}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K