MHB What Is the Value of S_n in the Summation Formula?

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Fun Sum
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Please compute the following sum:

$$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$
 
Mathematics news on Phys.org
Nice problem!:)

My solution:

We're given $$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$.

By multiplying the variable $k$ on top and bottom of the fraction, we get

$$\small S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}=\sum_{k=1}^{n}\frac{k(n!)}{k(k-1)!(n-k)!}=\sum_{k=1}^{n}\frac{k(n!)}{(k)!(n-k)!}=\sum_{k=1}^{n} k {n\choose k}=\sum_{k=0}^{n} k {n\choose k}-0{n\choose k}=\sum_{k=0}^{n} k {n\choose k}$$

Since $${n\choose k}={n\choose n-k}$$

We see that there is another way to rewrite $S_n$, i.e.

$$S_n=\sum_{k=0}^{n} (n-k) {n\choose n-k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose n-k}-\sum_{k=0}^{n} k {n\choose n-k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose k}-\sum_{k=0}^{n} k {n\choose k}$$

$$\;\;\;\;\;\;=\sum_{k=0}^{n} n {n\choose k}-S_n$$

$$\therefore 2S_n=\sum_{k=0}^{n} n {n\choose k}=n\sum_{k=0}^{n} {n\choose k}=n(2^n)$$

THus,

$$\therefore S_n=n(2)^{n-1}$$
 
Last edited:
Good ans by anemone .

Here is mine
anemone has shown that

Sn = ( k = 1 to n) ∑ k(nCk)

We know

(x+1)^n = ( k = 0 to n) ∑ (nCk)x^k

Differentiate both sides wrt x

n(x+1)^(n-1) = ( k = 1 to n) ∑ k (nCk)x^(k-1) knowing that d/dx(x^0) = 0 so it is dropped

put x = 1 on both sides to get

n 2^(n-1) = ( k = 1 to n) ∑ k (nCk) =Sn
 
Thank you anemone and kaliprasad for participating! (Sun)

Here is my solution:

$$S_n=\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}$$

$$S_n=\sum_{k=0}^{n-1}\frac{n!}{((k+1)-1)!(n-(k+1))!}=n\sum_{k=0}^{n-1}\frac{(n-1)!}{k!((n-1)-k)!}$$

$$S_n=n\sum_{k=0}^{n-1}{n-1 \choose k}=n(1+1)^{n-1}=n2^{n-1}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top