Undergrad What maps are considered in the Polyakov path integral?

Click For Summary
The discussion focuses on the mathematical formulation of the Polyakov path integral in string theory, particularly the integration over all maps from the worldsheet to the target manifold. The reference book emphasizes that the path integral includes contributions from various topologies and metrics, with the integral taken over the space of all continuous maps. There is a concern regarding the appropriateness of integrating over all maps rather than restricting to embeddings, as suggested in Polchinski's work. The implications of this broader integration on the physical relevance and mathematical consistency of the path integral are questioned. This highlights ongoing debates in the mathematical foundations of string theory.
GeniVasc
Messages
6
Reaction score
0
Recently I've came to some references on mathematical aspects on string theory that deal with the Polyakov euclidean path integral. An example is the book "Quantum Fields and Strings: A Course for Mathematicians. Volume 2", where it is stated roughly that the path integral is

$$A = \sum_{\text{topologies}} \int_{\text{Met}(\Sigma)} \frac{1}{\mathcal{N}(g)} \int_{\text{Map}(\Sigma, M)} Dg Dx e^{-S[x,g,G]},$$

where ##(\Sigma, g), \, (M, G)## are Riemannian manifolds and ##x: \Sigma \to M## is assumed to be only continuous (?), ##Dg, Dx## being "measures". The main problem to me is that one of the spaces over which the integral is taken is the space of ALL maps ##x: \Sigma \to M##. I'm my understanding, this should be a space of embeddings, just as it is assumed in Chapter 3 in Polchinski's Vol.1, when he constructs the Polyakov path integral. It is physically relevant to just integrante over all maps from the worldsheet to the manifold ##M##?
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 21 ·
Replies
21
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
3
Views
2K