MHB What Values of k Make These Vectors Linearly Dependent?

  • Thread starter Thread starter Yankel
  • Start date Start date
  • Tags Tags
    Linear Vectors
Click For Summary
The discussion focuses on determining the values of k that make four given vectors linearly dependent. The vectors are represented in a matrix, and Gaussian elimination reveals that the system has solutions when k equals 1 or -3. At k=1, all vectors become identical, while at k=-3, their sum results in the null vector. Therefore, for k=1 and k=-3, the vectors are dependent, leading to an infinite number of solutions. The confusion around the variables x and x4 is clarified, confirming that the key values for linear dependence are indeed k=1 and k=-3.
Yankel
Messages
390
Reaction score
0
I have 4 vectors:

(1,1,1,k), (1,1,k,1), (1,k,1,1), (k,1,1,1)

I need to find out for which values of k (if any) the vectors will be dependent.

I put them all to a matrix, and reduced it using the Gaussian method (homogeneous system). I received:

1st row: 1 1 1 k 0

2nd row: 0 (k-1) 0 (1-k) 0

3rd: 0 0 (k-1) (1-k) 0

4th: 0 0 0 (-2k+3-x^2) 0the reduction is correct, I verified with MAPLE.

I am stuck here, MAPLE say the solution is (0,0,0,0), meaning that the vectors are independent, but on the other hand, when I do it manually, I think is has a solution, for example, the last equation is:

(-2k+3-x^2)*x4=0

it can be either when x4 is 0 or when k is 1 or -3. I am confused...(Worried) :confused:
 
Physics news on Phys.org
What are x and x4?

When k=1 all the vectors are equal, so that's a solution.
When k=-3 the sum of the vectors is the null vector, so that's also a solution.
 
Last edited:
ah, sorry, confused x with k.

when k=1,-3 the system has infinite number of solutions, right ? so for these values the vectors are dependent...got it now, thanks !
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K