MHB What Vector Spans the Line Defined by These Two Equations?

  • Thread starter Thread starter TheFallen018
  • Start date Start date
  • Tags Tags
    Vector
TheFallen018
Messages
52
Reaction score
0
Hey,

I've got this problem that I'm trying to work out. I've tried a couple of things, but they don't really get me anywhere.

Here's the problem

Find a vector that spans the line defined by these two equations.
$x+6y+3z=0$
$x+3y+4z=0$

What would be the best way to go about this? Thanks :)
 
Physics news on Phys.org
Hi fallen angel,

There are many, many ways to approach this.

The easiest I can think of is the following.
Let's assume that the vector we are searching for has a non-zero y-component.
Then we can set y arbitrarily to 1.
Now solve the system.

Btw, I've picked y to set to 1, since y is the coordinate with the largest coefficient (6), giving us the biggest chance that the other numbers are 'nice' numbers.
 
I like Serena said:
Hi fallen angel,

There are many, many ways to approach this.

The easiest I can think of is the following.
Let's assume that the vector we are searching for has a non-zero y-component.
Then we can set y arbitrarily to 1.
Now solve the system.

Btw, I've picked y to set to 1, since y is the coordinate with the largest coefficient (6), giving us the biggest chance that the other numbers are 'nice' numbers.
Hey, thanks. That makes sense. I ended up coming up with (-15,1,3), which worked nicely. However, I'm curious about other ways to do this. Is there a fairly systematical method that would allow you to come up with a vector that would contain all values? Something that would look like (-15,1,3)+t(x,y,z).

Thanks
 
TheFallen018 said:
Hey,

I've got this problem that I'm trying to work out. I've tried a couple of things, but they don't really get me anywhere.

Here's the problem

Find a vector that spans the line defined by these two equations.
$x+6y+3z=0$
$x+3y+4z=0$

What would be the best way to go about this? Thanks :)
The first thing I see is that the two equations start with "x". If we subtract the second equation from the first, we eliminate "x" and get 3y- z= 0. So z= 3y. Putting 3y in for z the two equations become x+ 6y+ 9y= x+ 15y= 0 and x+ 3y+ 12y= x+ 15y= 0. In either case, x= -15y. So <x, y, z>= <-15y, y, 3y>= y<-15, 1, 3>. <-15, 1, 3>, or any multiple of it, spans that line.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
13
Views
3K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
1
Views
2K
Replies
8
Views
3K
Replies
2
Views
2K
Back
Top