MHB What went wrong when applying the FTOC to maximize arc length?

Click For Summary
SUMMARY

The discussion centers on the application of the Fundamental Theorem of Calculus (FTOC) to maximize the arc length of a projectile's trajectory under gravity. The trajectory is defined by the equation \(y=\tan(\theta)x-\frac{g\sec^2(\theta)}{2v_0^2}x^2\), leading to the arc length expression \(s=\int_0^{\frac{v_0^2}{g}\sin(2\theta)} \sqrt{1+\left(\frac{dy}{dx} \right)^2}\,dx\). The initial differentiation attempt yielded a maximum angle of \(\theta=45^{\circ}\), which was incorrect; the correct angle is approximately \(\theta=56.5^{\circ}\). The error was identified as a misunderstanding of how to apply the chain rule in the context of the FTOC, specifically regarding the dependence of the integrand on \(\theta\).

PREREQUISITES
  • Understanding of projectile motion and trajectory equations.
  • Familiarity with the Fundamental Theorem of Calculus (FTOC).
  • Knowledge of differentiation techniques, including the chain rule.
  • Proficiency in integral calculus and arc length calculations.
NEXT STEPS
  • Study the application of the Fundamental Theorem of Calculus in multivariable contexts.
  • Learn about arc length calculations for parametric curves.
  • Explore Newton's method for solving nonlinear equations.
  • Investigate the relationship between launch angles and projectile motion optimization.
USEFUL FOR

Mathematicians, physics students, and engineers interested in optimizing projectile trajectories and understanding advanced calculus applications.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Yesterday on another forum, someone asked for the launch angle which will maximize the arc-length of the trajectory for a projectile, assuming gravity is the only force on the projectile after the launch.

I eliminated the parameter t to get the trajectory:

$\displaystyle y=\tan(\theta)x-\frac{g\sec^2(\theta)}{2v_0^2}x^2$

and so the arc-length is given by:

$\displaystyle s=\int_0^{\frac{v_0^2}{g}\sin(2\theta)} \sqrt{1+\left(\frac{dy}{dx} \right)^2}\,dx$

Now, at this point I wanted to differentiate this using the derivative form of the FTOC, and what I got was:

$\displaystyle \frac{ds}{d\theta}=\frac{2v_0^2}{g}\cos(2\theta) \sqrt{1+\left(\frac{dy}{dx} \right)^2}$

This implies that the maximum occurs for:

$\displaystyle \theta=45^{\circ}$

Which I knew was incorrect. The OP stated the solution was approximately:

$\displaystyle \theta=56.5^{\circ}$

I gave up this route and went ahead and integrated through a myriad of substitutions to finally find:

$\displaystyle s(\theta)=\frac{v_0^2}{g}(\sin(\theta)+\cos^2( \theta)\ln(\sec(\theta)+\tan(\theta)))$

Differentiating and equating to zero eventually led to:

$\displaystyle f(\theta)=\sin(\theta)\ln(\sec(\theta)+\tan(\theta))-1=0$

and using Newton's method, I found:

$\displaystyle \theta\approx56.4658351275^{\circ}$

My question is, what did I do wrong when trying to apply the FTOC? I suspect I am not correctly applying the chain rule.
 
Physics news on Phys.org
MarkFL said:
Yesterday on another forum, someone asked for the launch angle which will maximize the arc-length of the trajectory for a projectile, assuming gravity is the only force on the projectile after the launch.

I eliminated the parameter t to get the trajectory:

$\displaystyle y=\tan(\theta)x-\frac{g\sec^2(\theta)}{2v_0^2}x^2$

and so the arc-length is given by:

$\displaystyle s=\int_0^{\frac{v_0^2}{g}\sin(2\theta)} \sqrt{1+\left(\frac{dy}{dx} \right)^2}\,dx$

Now, at this point I wanted to differentiate this using the derivative form of the FTOC, and what I got was:

$\displaystyle \frac{ds}{d\theta}=\frac{2v_0^2}{g}\cos(2\theta) \sqrt{1+\left(\frac{dy}{dx} \right)^2}$

This implies that the maximum occurs for:

$\displaystyle \theta=45^{\circ}$

Which I knew was incorrect. The OP stated the solution was approximately:

$\displaystyle \theta=56.5^{\circ}$

My question is, what did I do wrong when trying to apply the FTOC? I suspect I am not correctly applying the chain rule.

You need to account for the fact that the integrand is also dependent on \(\theta\).

If I have done this right the FTOC you need is:

If:

\[s(\theta)=\int_a^{f(\theta)} h(x,\theta) dx\]

Then:

\[s'(\theta)=f'(\theta)h(f(\theta),\theta)+\int_a^{f(\theta)}\frac{\partial h(x,\theta)}{\partial \theta} dx \]

CB
 
Thank you! It seems the FTOC wouldn't really help me in this case.
 
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K