Deveno
Science Advisor
Gold Member
MHB
- 2,726
- 6
i think it's more a matter of information organization (boy, THAT's a mouthful).
for example, in linear algebra, it's more "empowering" to really understand what a basis is good for, than to have lots of computational experience calculating eigenvalues and the like. it's not that computation isn't useful, or that working with n-vectors, matrices (and eventually tensors) is "wrong" it's that the "practical application" parts of linear algebra can obscure the ways in which the full power of linear algebra can be used (apparently, for example, actuaries use it all the time).
a lot of people learning calculus for the physical sciences (or even, gasp! biology), will still encounter, even if at a somewhat less-intense level, functions of more than one variable. if limits for single variables seem intractible at times, multivariate limits can get downright funky. and epsilon-delta views of things really do help wade through the fog.
there's a certain sort of give-and-take that occurs in math: if the definitions are hard, the theorems are easy, and vice versa (note: there are counter-examples). i think the topological concepts (and the geometric intutions you can use along with them) are given short shrift when limits are "glossed over".
but sure...for an average calculus student, it's straight from the quadratic formula and a little trig to...wtf? open set? least upper bound? where did my nice algebra that i was finally getting the hang of go? what's an "existential quantifier" and why is it bad if i get the "for all" and the "there exists" in the wrong order?
the thing is: a little density can go a long way. topological methods are starting to show up in the most unlikely of places: statistical analysis (like demographic analysis for advertisers), security system design, biological classification. a metric is a powerful concept, and it's useful for more than just "number-crunching" types of math.
perhaps in the class the thread starter is taking, the limits being examined are ones that aren't too pathological, reinforcing the idea that "usually" we can do without all this complicated stuff. personally, i like the idea of basing calculus on "nearness" (which actually implies the epsilon-delta definition) and is closer in spirit to the general requirement in topological spaces that f-1(U) is open if U is. "neighborhood" is a nice, friendly word, and helps loosen up the formality of the language.
khan academy has some really nice videos where he breaks down visually where the epsilon and the delta comes from. when you see it graphically, it makes more sense. i'll admit, there's a certain dryness and lack of humor permeating calculus, all of a sudden it's: stuff just got real.
*****
f(x) = 1 - (x2)1/3 was what i meant. silly me.
for example, in linear algebra, it's more "empowering" to really understand what a basis is good for, than to have lots of computational experience calculating eigenvalues and the like. it's not that computation isn't useful, or that working with n-vectors, matrices (and eventually tensors) is "wrong" it's that the "practical application" parts of linear algebra can obscure the ways in which the full power of linear algebra can be used (apparently, for example, actuaries use it all the time).
a lot of people learning calculus for the physical sciences (or even, gasp! biology), will still encounter, even if at a somewhat less-intense level, functions of more than one variable. if limits for single variables seem intractible at times, multivariate limits can get downright funky. and epsilon-delta views of things really do help wade through the fog.
there's a certain sort of give-and-take that occurs in math: if the definitions are hard, the theorems are easy, and vice versa (note: there are counter-examples). i think the topological concepts (and the geometric intutions you can use along with them) are given short shrift when limits are "glossed over".
but sure...for an average calculus student, it's straight from the quadratic formula and a little trig to...wtf? open set? least upper bound? where did my nice algebra that i was finally getting the hang of go? what's an "existential quantifier" and why is it bad if i get the "for all" and the "there exists" in the wrong order?
the thing is: a little density can go a long way. topological methods are starting to show up in the most unlikely of places: statistical analysis (like demographic analysis for advertisers), security system design, biological classification. a metric is a powerful concept, and it's useful for more than just "number-crunching" types of math.
perhaps in the class the thread starter is taking, the limits being examined are ones that aren't too pathological, reinforcing the idea that "usually" we can do without all this complicated stuff. personally, i like the idea of basing calculus on "nearness" (which actually implies the epsilon-delta definition) and is closer in spirit to the general requirement in topological spaces that f-1(U) is open if U is. "neighborhood" is a nice, friendly word, and helps loosen up the formality of the language.
khan academy has some really nice videos where he breaks down visually where the epsilon and the delta comes from. when you see it graphically, it makes more sense. i'll admit, there's a certain dryness and lack of humor permeating calculus, all of a sudden it's: stuff just got real.
*****
f(x) = 1 - (x2)1/3 was what i meant. silly me.