I When does the separation of variables work

kelly0303
Messages
573
Reaction score
33
When studying the hydrogen atom, given that the potential depends only on the distance and not an any angle, we can do a separation of variables of the wavefunction as the product between a function depending only on the distance between particles (protons and electrons) and a spherical harmonic. However I saw this done even when the potential does depend on angle, for example when having the interaction between 2 electric dipoles. What is the criterion based on which I know if I can just a factorizable wavefunction or not? Thank you!
 
  • Like
Likes dextercioby
Physics news on Phys.org
Two answers:

(1) You just have to try it. Sometimes it helps and sometimes it just makes a mess.

(2) There is a deep relation between separation of variables and symmetries. The hydrogen atom can be solved by separation of variables in two different coordinate systems, spherical and parabolic. This is why you have the degeneracy of radial and angular energy levels.
 
  • Like
Likes dextercioby
Separation variables works when it works. If it doesn't work, it can often lead to a series solution like the Legendre polynomial expansion.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top